Larissa Lorrane Rodrigues Borges , Valdeir Viana Freitas , Amanda Lais Alves Almeida Nascimento , Janaina Gonçalves Fernandes , Hélia de Barros Kobi , Monique Renon Eller , Frederico Augusto Ribeiro de Barros , Luciana Ângelo de Souza , Gabriel Abranches Dias Castro , Arthur Figueira de Carvalho , Jaqueline de Araújo Bezerra , Sergio Antonio Fernandes , Gustavo Costa Bressan , Evandro Martins , Pedro Henrique Campelo , Paulo César Stringheta
{"title":"Enhancement of phenolic compounds bioaccessibility in jabuticaba wine through fermentation by Saccharomyces cerevisiae","authors":"Larissa Lorrane Rodrigues Borges , Valdeir Viana Freitas , Amanda Lais Alves Almeida Nascimento , Janaina Gonçalves Fernandes , Hélia de Barros Kobi , Monique Renon Eller , Frederico Augusto Ribeiro de Barros , Luciana Ângelo de Souza , Gabriel Abranches Dias Castro , Arthur Figueira de Carvalho , Jaqueline de Araújo Bezerra , Sergio Antonio Fernandes , Gustavo Costa Bressan , Evandro Martins , Pedro Henrique Campelo , Paulo César Stringheta","doi":"10.1016/j.fbp.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>Jabuticaba (<em>Plinia cauliflora</em>), a fruit native to Brazil, is known for the high phenolic content in its peel, which is usually discarded. The development of jabuticaba wine is an alternative for better nutritional and technological utilization of the fruit. In this context, the study is the first to investigate the biotransformation of phenolic compounds in jabuticaba during alcoholic fermentation by <em>Saccharomyces cerevisiae</em> and maturation. The research also explored the antioxidant and antiproliferative effects of the beverages, as well as their ability to inhibit α-glucosidase and lipase. Fermentation of jabuticaba significantly increased total phenolic compounds (4.91 ± 0.07-fold), total anthocyanins (5.62 ± 1.17-fold), cyanidin-3-glucoside (2.05 ± 0.74-fold), gallic acid (57.02 ± 3.70-fold), and protocatechuic acid (3.70 ± 0.51-fold), as well as the bioaccessibility of these compounds. The beverages also showed antiproliferative effects against cancer cells, antioxidant activities, and enzyme inhibition properties. Maturation at 4 ± 2 °C for 30 days reduced the cytotoxicity of the samples. Despite a reduction in phenolic concentration after digestion, the samples retained bioactive potential. These results establish reference data on the chemical composition and bioactive potential of jabuticaba wine.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"148 ","pages":"Pages 198-207"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524001822","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Jabuticaba (Plinia cauliflora), a fruit native to Brazil, is known for the high phenolic content in its peel, which is usually discarded. The development of jabuticaba wine is an alternative for better nutritional and technological utilization of the fruit. In this context, the study is the first to investigate the biotransformation of phenolic compounds in jabuticaba during alcoholic fermentation by Saccharomyces cerevisiae and maturation. The research also explored the antioxidant and antiproliferative effects of the beverages, as well as their ability to inhibit α-glucosidase and lipase. Fermentation of jabuticaba significantly increased total phenolic compounds (4.91 ± 0.07-fold), total anthocyanins (5.62 ± 1.17-fold), cyanidin-3-glucoside (2.05 ± 0.74-fold), gallic acid (57.02 ± 3.70-fold), and protocatechuic acid (3.70 ± 0.51-fold), as well as the bioaccessibility of these compounds. The beverages also showed antiproliferative effects against cancer cells, antioxidant activities, and enzyme inhibition properties. Maturation at 4 ± 2 °C for 30 days reduced the cytotoxicity of the samples. Despite a reduction in phenolic concentration after digestion, the samples retained bioactive potential. These results establish reference data on the chemical composition and bioactive potential of jabuticaba wine.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.