Leveraging artificial neural networks approach for thermal conductivity evaluation in porous rectangular wetted fins filled with ternary hybrid nanofluid

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-09-23 DOI:10.1016/j.jrras.2024.101125
Tanuja T N , Manjunatha S , Hatim Solayman Migdadi , Rania Saadeh , Ahmad Qazza , Umair Khan , Syed Modassir Hussain , Yalcin Yılmaz , Ahmed M. Galal
{"title":"Leveraging artificial neural networks approach for thermal conductivity evaluation in porous rectangular wetted fins filled with ternary hybrid nanofluid","authors":"Tanuja T N ,&nbsp;Manjunatha S ,&nbsp;Hatim Solayman Migdadi ,&nbsp;Rania Saadeh ,&nbsp;Ahmad Qazza ,&nbsp;Umair Khan ,&nbsp;Syed Modassir Hussain ,&nbsp;Yalcin Yılmaz ,&nbsp;Ahmed M. Galal","doi":"10.1016/j.jrras.2024.101125","DOIUrl":null,"url":null,"abstract":"<div><div>The present work deals the temperature transmission of wetted rectangular porous fins of fixed length with an adiabatic tip under Local Thermal Non-Equilibrium (LTNE) model is analysed with the influence of convection and radiation effects. By using the Darcy model and Boussinesq's approximation, the impacts of buoyancy force are considered to estimate the penetration speed within the permeable material. Two energy equations (Solid and Fluid state) are derived for the mathematical model. The fluid state consists of ternary hybrid nanofluid with a combination of <span><math><mrow><mi>M</mi><mi>o</mi><msub><mi>S</mi><mn>2</mn></msub><mo>+</mo><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>+</mo><mi>N</mi><mi>i</mi><mi>Z</mi><mi>n</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span> nanoparticles with methanol as a base fluid. In addition, both equations are converted to dimensionless non-linear ordinary differential equations by using dimensionless variables, and these equations are solved by using Runge Kutta Fehlberg fourth fifth-order (RKF 45). Further, the average Nusselt number is analysed using an Artificial neural network by applying the Levenberg Marquart backpropagations algorithm. By using this algorithm, the regression analysis, mean square error, and error histogram of the neural network are analysed. In this model, three distinct types of samples are examined, comprising 80% of data points allocated for training the neural network, 10% for testing, and 10% for validation of the artificial neural network (ANN) model. The supremacy of essential aspects of the temperature profile and average Nusselt number is displayed through graphs. However, it is noticed from the results that the surface-ambient radiation parameter levels are decreased and the temperature profile of both solid and ternary nanofluid phase is augmented. The regression coefficient value obtained from ANN model is <span><math><mrow><mi>R</mi><mo>=</mo><mn>1</mn></mrow></math></span> f, which means the parameters are in strong correlation with each other.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101125"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724003091/pdfft?md5=16c561779b8aa4992eb06b726b54c6f6&pid=1-s2.0-S1687850724003091-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724003091","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The present work deals the temperature transmission of wetted rectangular porous fins of fixed length with an adiabatic tip under Local Thermal Non-Equilibrium (LTNE) model is analysed with the influence of convection and radiation effects. By using the Darcy model and Boussinesq's approximation, the impacts of buoyancy force are considered to estimate the penetration speed within the permeable material. Two energy equations (Solid and Fluid state) are derived for the mathematical model. The fluid state consists of ternary hybrid nanofluid with a combination of MoS2+Fe3O4+NiZnFe2O4 nanoparticles with methanol as a base fluid. In addition, both equations are converted to dimensionless non-linear ordinary differential equations by using dimensionless variables, and these equations are solved by using Runge Kutta Fehlberg fourth fifth-order (RKF 45). Further, the average Nusselt number is analysed using an Artificial neural network by applying the Levenberg Marquart backpropagations algorithm. By using this algorithm, the regression analysis, mean square error, and error histogram of the neural network are analysed. In this model, three distinct types of samples are examined, comprising 80% of data points allocated for training the neural network, 10% for testing, and 10% for validation of the artificial neural network (ANN) model. The supremacy of essential aspects of the temperature profile and average Nusselt number is displayed through graphs. However, it is noticed from the results that the surface-ambient radiation parameter levels are decreased and the temperature profile of both solid and ternary nanofluid phase is augmented. The regression coefficient value obtained from ANN model is R=1 f, which means the parameters are in strong correlation with each other.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络方法评估填充三元混合纳米流体的多孔矩形润湿鳍片的热导率
本研究分析了在局部热非均衡(LTNE)模型下,具有绝热顶端的固定长度的湿润矩形多孔鳍片的温度传输,以及对流和辐射效应的影响。通过使用达西模型和布西内斯克近似法,考虑了浮力的影响,以估算渗透材料内部的渗透速度。数学模型推导出两个能量方程(固态和流态)。流体状态由 MoS2+Fe3O4+NiZnFe2O4 纳米粒子组合的三元混合纳米流体和甲醇作为基础流体组成。此外,利用无量纲变量将这两个方程转换为无量纲非线性常微分方程,并利用 Runge Kutta Fehlberg 四阶五次方(RKF 45)对这些方程进行求解。此外,还通过应用 Levenberg Marquart 反向传播算法,使用人工神经网络对平均努塞尔特数进行了分析。通过使用该算法,对神经网络的回归分析、均方误差和误差直方图进行了分析。在该模型中,对三种不同类型的样本进行了研究,其中 80% 的数据点用于训练神经网络,10% 用于测试,10% 用于验证人工神经网络(ANN)模型。通过图表显示了温度曲线和平均努塞尔特数等重要方面的优越性。然而,从结果中可以发现,表面-环境辐射参数水平降低了,固相和三元纳米流体相的温度曲线都增加了。从 ANN 模型中得到的回归系数值为 R=1 f,这意味着参数之间具有很强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
The impact of radiologists’ characteristics on the detection of COVID-19 in chest CT scans Effects of thermal radiation on TiO2-Cu/water hybrid nanofluid: A finite difference discretization Coronary computed tomographic angiography predicts crossing through chronic total occlusion within three guidewires Detection of clavicle fracture after martial arts training based on 3D segmentation and multi-perspective fusion Application of ultrasonic imaging technology in beef cattle breeding management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1