Nikolaos S. Papageorgiou , Dongdong Qin , Vicenţiu D. Rădulescu
{"title":"Singular non-autonomous (p,q)-equations with competing nonlinearities","authors":"Nikolaos S. Papageorgiou , Dongdong Qin , Vicenţiu D. Rădulescu","doi":"10.1016/j.nonrwa.2024.104225","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a parametric non-autonomous <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-linear and where it is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104225"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001640","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a parametric non-autonomous -equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is -linear and where it is -superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.