Three-dimensional structure of temperature, salinity, and Velocity of the summertime Vietnamese upwelling system in the South China Sea on the interannual timescale
{"title":"Three-dimensional structure of temperature, salinity, and Velocity of the summertime Vietnamese upwelling system in the South China Sea on the interannual timescale","authors":"Mai-Han Ngo , Yi-Chia Hsin","doi":"10.1016/j.pocean.2024.103354","DOIUrl":null,"url":null,"abstract":"<div><div>Summertime upwelling system off the southern Vietnamese coast is one of the most essential oceanographic features in the South China Sea. This system is divided into two regions along the coast, the Southern Coastal Upwelling (SCU; south of 12.5°N) and Northern Coastal Upwelling (NCU; north of 12.5°N), and one in the offshore area, the Offshore Upwelling (OU; east of 110°E). Utilizing the HYCOM ocean reanalysis product in the period of 1994–2015, vertical characteristics of this upwelling system on the interannual timescale are investigated. Furthermore, the omega equation is applied to reconstruct vertical velocity to quantify its intensity and clarify the corresponding leading factors in the three regions. The analysis indicates that the kinematic deformation effect is the primary contributor to coastal upwelling formation while the momentum effect plays the leading role in offshore upwelling. The SCU variability is more sensitive to the momentum effect; however, in the NCU, the kinematic deformation effect is offset by the momentum effect and the upwelling is enhanced as the kinematic deformation (momentum) effect increases (decreases). The summertime mean vertical velocities in the central areas of SCU, NCU, and OU are estimated at 0.16 m/d, −0.08 m/d, and 0.003 m/d, respectively. The vertical velocity speeds up to 0.32 m/d, 0.07 m/d, and 0.08 m/d as the strong upwelling event occurs.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079661124001605/pdfft?md5=387cb28233e0ebbefb94e39ed849470a&pid=1-s2.0-S0079661124001605-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001605","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Summertime upwelling system off the southern Vietnamese coast is one of the most essential oceanographic features in the South China Sea. This system is divided into two regions along the coast, the Southern Coastal Upwelling (SCU; south of 12.5°N) and Northern Coastal Upwelling (NCU; north of 12.5°N), and one in the offshore area, the Offshore Upwelling (OU; east of 110°E). Utilizing the HYCOM ocean reanalysis product in the period of 1994–2015, vertical characteristics of this upwelling system on the interannual timescale are investigated. Furthermore, the omega equation is applied to reconstruct vertical velocity to quantify its intensity and clarify the corresponding leading factors in the three regions. The analysis indicates that the kinematic deformation effect is the primary contributor to coastal upwelling formation while the momentum effect plays the leading role in offshore upwelling. The SCU variability is more sensitive to the momentum effect; however, in the NCU, the kinematic deformation effect is offset by the momentum effect and the upwelling is enhanced as the kinematic deformation (momentum) effect increases (decreases). The summertime mean vertical velocities in the central areas of SCU, NCU, and OU are estimated at 0.16 m/d, −0.08 m/d, and 0.003 m/d, respectively. The vertical velocity speeds up to 0.32 m/d, 0.07 m/d, and 0.08 m/d as the strong upwelling event occurs.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.