{"title":"Preparation of a rubber nanocomposite for oil/water separation using surface functionalized/silanized carbon black nanoparticles","authors":"Fatemeh Ghasemi , Masoud Jamshidi , Reza Ghamarpoor","doi":"10.1016/j.wri.2024.100268","DOIUrl":null,"url":null,"abstract":"<div><div>Clean water is the basic need of living organisms on the earth. Oil spills to free waters is one of the most important threats to living beings. It has been believed that using sorbents is the most effective method for this purpose. In this research, usage of tire rubber with improved hydrophobic properties is considered. For this purpose, carbon black nanoparticles (CBNs) were surface modified with vinyltrimthoxysilane (VTMS) at concentrations of 1, 5 and 10 by sol-gel method. Before, the CBNs were hydroxylated to increase silane grafting content. The surface modified was evaluated using XPS, FTIR, TGA, BET and FESEM analysis. Results showed a great change in the CBNs nature from hydrophilic to hydrophobic after silane modification that could help in more oil absorption and water repletion at the same time. In fact, the water contact angle (WCA) of the CBNs changed from 40 to 135°. The pure and silane grafted CBNs were added to the tire tread compound to prepare elastomeric nanocomposites as oil sorbent. The results showed that the modified nanocomposite had a higher reinforcement index than the samples contained pure and hydroxylated CBNs. The effects of CBNs on WCA, OCA and oil absorption capacity of the samples were also determined. It was found that silane modification a considerable increase in the WCA from 61.2° to 125.03° and a decrease in the oil contact angle (OCA) from 70.01° to 17.74°. Also, the oil absorption capacity of rubber enhanced from 0.55 to 1.95 g/g.</div></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"32 ","pages":"Article 100268"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371724000301/pdfft?md5=37f6529fb882bddb808e50f6021262d4&pid=1-s2.0-S2212371724000301-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371724000301","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clean water is the basic need of living organisms on the earth. Oil spills to free waters is one of the most important threats to living beings. It has been believed that using sorbents is the most effective method for this purpose. In this research, usage of tire rubber with improved hydrophobic properties is considered. For this purpose, carbon black nanoparticles (CBNs) were surface modified with vinyltrimthoxysilane (VTMS) at concentrations of 1, 5 and 10 by sol-gel method. Before, the CBNs were hydroxylated to increase silane grafting content. The surface modified was evaluated using XPS, FTIR, TGA, BET and FESEM analysis. Results showed a great change in the CBNs nature from hydrophilic to hydrophobic after silane modification that could help in more oil absorption and water repletion at the same time. In fact, the water contact angle (WCA) of the CBNs changed from 40 to 135°. The pure and silane grafted CBNs were added to the tire tread compound to prepare elastomeric nanocomposites as oil sorbent. The results showed that the modified nanocomposite had a higher reinforcement index than the samples contained pure and hydroxylated CBNs. The effects of CBNs on WCA, OCA and oil absorption capacity of the samples were also determined. It was found that silane modification a considerable increase in the WCA from 61.2° to 125.03° and a decrease in the oil contact angle (OCA) from 70.01° to 17.74°. Also, the oil absorption capacity of rubber enhanced from 0.55 to 1.95 g/g.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry