Evaluation of the hydrogen/oxygen and thermoelectric production of a hybrid solar PV/T-electrolyzer system

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-09-20 DOI:10.1016/j.rineng.2024.102920
Armel Zambou Kenfack , Modeste Kameni Nematchoua , Venant Sorel Chara-Dackou , Elie Simo
{"title":"Evaluation of the hydrogen/oxygen and thermoelectric production of a hybrid solar PV/T-electrolyzer system","authors":"Armel Zambou Kenfack ,&nbsp;Modeste Kameni Nematchoua ,&nbsp;Venant Sorel Chara-Dackou ,&nbsp;Elie Simo","doi":"10.1016/j.rineng.2024.102920","DOIUrl":null,"url":null,"abstract":"<div><div>In order to achieve a sustainable, low-carbon energy future, it is necessary to develop innovative and integrated solutions. However, one of the main obstacles to the advancement of renewable energy is storage. With this in mind, hybrid systems combining solar energy and hydrogen production have great potential. This article focuses on the evaluation of a solar PV/T (photovoltaic-thermal) system coupled with an electrolyser for the joint production of hydrogen and heat. Simulations are performed in MATLAB. The analysis reveals that with PV/T power supply, the production potential is estimated at 179.6 W and 551.9 W respectively for electrical and thermal power. An in-depth study aimed at optimizing the system by evaluating the quality of the energy used in the water electrolysis process makes it possible to analyze the effect of certain operating parameters. With a water flow of 5.7 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mi>m</mi><mn>3</mn></msup><mo>/</mo><mi>h</mi></mrow></math></span>, a current density of 200 mA/ <span><math><mrow><msup><mtext>cm</mtext><mn>2</mn></msup></mrow></math></span> and an electrolyzer temperature of 60 °C, the monthly production of hydrogen and oxygen reaches the maximum values of 4.85 <span><math><mrow><msup><mi>m</mi><mn>3</mn></msup></mrow></math></span> and 2.42 <span><math><mrow><msup><mi>m</mi><mn>3</mn></msup></mrow></math></span> respectively. This led to a maximum exergy efficiency of 57.8 %. This study demonstrates the linearity between hydrogen production and current density which at high density reduces exergy performance.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 102920"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590123024011757/pdfft?md5=5ca2276cfaf8d3c6b330c6fdc5764ebb&pid=1-s2.0-S2590123024011757-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024011757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve a sustainable, low-carbon energy future, it is necessary to develop innovative and integrated solutions. However, one of the main obstacles to the advancement of renewable energy is storage. With this in mind, hybrid systems combining solar energy and hydrogen production have great potential. This article focuses on the evaluation of a solar PV/T (photovoltaic-thermal) system coupled with an electrolyser for the joint production of hydrogen and heat. Simulations are performed in MATLAB. The analysis reveals that with PV/T power supply, the production potential is estimated at 179.6 W and 551.9 W respectively for electrical and thermal power. An in-depth study aimed at optimizing the system by evaluating the quality of the energy used in the water electrolysis process makes it possible to analyze the effect of certain operating parameters. With a water flow of 5.7 ×103 m3/h, a current density of 200 mA/ cm2 and an electrolyzer temperature of 60 °C, the monthly production of hydrogen and oxygen reaches the maximum values of 4.85 m3 and 2.42 m3 respectively. This led to a maximum exergy efficiency of 57.8 %. This study demonstrates the linearity between hydrogen production and current density which at high density reduces exergy performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能光伏/电解槽混合系统的氢气/氧气和热电生产评估
为了实现可持续的低碳能源未来,有必要开发创新的综合解决方案。然而,可再生能源发展的主要障碍之一是储存。有鉴于此,太阳能与制氢相结合的混合系统具有巨大潜力。本文重点评估了太阳能 PV/T(光伏-热能)系统与电解槽的结合,以实现氢气和热能的联合生产。仿真在 MATLAB 中进行。分析结果表明,在光伏/热供电的情况下,电能和热能的生产潜力估计分别为 179.6 W 和 551.9 W。通过评估水电解过程中所用能源的质量,旨在优化系统的深入研究使得分析某些运行参数的影响成为可能。在水流量为 5.7 ×10-3 m3/h、电流密度为 200 mA/ cm2 和电解槽温度为 60 °C 的条件下,氢气和氧气的月产量分别达到 4.85 m3 和 2.42 m3 的最大值。因此,最高能效为 57.8%。这项研究证明了氢气产量与电流密度之间的线性关系,在高密度情况下,电流密度会降低放能效能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Advancements and applications of smart contact lenses: A comprehensive review Transforming food waste into energy: A comprehensive review Thermal management strategies for lithium-ion batteries in electric vehicles: A comprehensive review of nanofluid-based battery thermal management systems A comprehensive recent review and practical insights on the usage of advanced materials and enhancement strategies in thermoelectric applications Integrating artificial intelligence in nanomembrane systems for advanced water desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1