{"title":"Independence, matching and packing coloring of the iterated Mycielskian of graphs","authors":"Kamal Dliou","doi":"10.1016/j.dam.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote respectively the independence, matching, 2-matching and packing chromatic numbers of a graph <span><math><mi>G</mi></math></span>. A well-known construction on graphs, called the Mycielskian of a graph, transforms any <span><math><mi>k</mi></math></span>-chromatic graph <span><math><mi>G</mi></math></span> into a <span><math><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-chromatic graph <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> having an equal clique number to <span><math><mi>G</mi></math></span>. The <span><math><mi>t</mi></math></span>th iterated Mycielskian of a graph <span><math><mi>G</mi></math></span>, denoted <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is obtained by iteratively repeating the Mycielskian transformation <span><math><mi>t</mi></math></span> times. In this paper, we give <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Then we show that for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mo>max</mo><mrow><mo>{</mo><mrow><mo>|</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>α</mi><mrow><mo>(</mo><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. We characterize for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, the connected graphs having <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> and those having <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Afterwards, we give <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Then we show that for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a König–Egerváry graph if and only if <span><math><mi>G</mi></math></span> does not have a perfect 2-matching. Later, we investigate the packing chromatic number of <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We present several sharp upper and lower bounds for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, some in terms of the number of iterations <span><math><mi>t</mi></math></span>, the order of <span><math><mi>G</mi></math></span>, the <span><math><mi>k</mi></math></span>-independence number with <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> can be computed in polynomial time if <span><math><mi>G</mi></math></span> has a diameter at most 2. Recently, in Bidine et al. (2023) the authors studied diameter two graphs having <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. Here we fully characterize the diameter two graphs for which this equality holds. They also asked a question about the growth of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We show that for <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> cannot be upper bounded by a function of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> alone. In addition, we discuss the realizable values for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and characterize the graphs having the least possible <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 22-33"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let , , and denote respectively the independence, matching, 2-matching and packing chromatic numbers of a graph . A well-known construction on graphs, called the Mycielskian of a graph, transforms any -chromatic graph into a -chromatic graph having an equal clique number to . The th iterated Mycielskian of a graph , denoted , is obtained by iteratively repeating the Mycielskian transformation times. In this paper, we give in terms of . Then we show that for all , . We characterize for all , the connected graphs having and those having . Afterwards, we give and for all in terms of . Then we show that for all , is a König–Egerváry graph if and only if does not have a perfect 2-matching. Later, we investigate the packing chromatic number of . We present several sharp upper and lower bounds for , some in terms of the number of iterations , the order of , the -independence number with and . We show that can be computed in polynomial time if has a diameter at most 2. Recently, in Bidine et al. (2023) the authors studied diameter two graphs having for . Here we fully characterize the diameter two graphs for which this equality holds. They also asked a question about the growth of in terms of . We show that for , cannot be upper bounded by a function of alone. In addition, we discuss the realizable values for and characterize the graphs having the least possible .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.