Sliding wear behaviors of low alloy high strength martensite wear-resistant steels

IF 5.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Wear Pub Date : 2024-09-12 DOI:10.1016/j.wear.2024.205573
{"title":"Sliding wear behaviors of low alloy high strength martensite wear-resistant steels","authors":"","doi":"10.1016/j.wear.2024.205573","DOIUrl":null,"url":null,"abstract":"<div><div>The sliding wear properties of newly developed HB500 and HB550 low alloy high strength martensitic wear-resistant steels under different loads were investigated. The corresponding friction coefficients under varied loads were measured and the contact stress was discussed. The results show that the tensile property and wear performance between the developed HB500 steel with lower composition cost and the commercial wear-resistant steel of a similar grade were comparable, indicating that the HB500 steel can replace the widely used commercial steel. In addition, the hardness and tensile strength of HB550 steel reached 559HB and 1874 MPa with impact toughness at −40 °C of 44.5 J/cm<sup>2</sup> and excellent wear resistance. Moreover, the mass loss increased with increasing load from 10 N to 50 N, while it decreased when further increasing the load from 50 N to 90 N, which was different from the reported result that the mass loss monotonically increased with the load. The wear mechanism was mainly abrasive wear with a certain degree of buffering effect at lower loads, while it changed to mainly adhesive wear and oxidative wear with buffering, lubrication, and protection effects at the high load. Furthermore, the mass loss and the friction coefficient of the two developed steels were more sensitive to the load rather than the material hardness. Lastly, it was the first time to analyze and compare the changes of absolute stress of <span><math><mrow><msqrt><msub><mi>J</mi><mn>2</mn></msub></msqrt></mrow></math></span> and relative stress of <span><math><mrow><msqrt><msub><mi>J</mi><mn>2</mn></msub></msqrt></mrow></math></span> under varied wear conditions. It is interesting to find that the absolute stress of <span><math><mrow><msqrt><msub><mi>J</mi><mn>2</mn></msub></msqrt></mrow></math></span> was more suitable and sensitive to the wear parameters, and the influences of the applied load and the friction coefficient on the contact stress were competitive.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003387","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sliding wear properties of newly developed HB500 and HB550 low alloy high strength martensitic wear-resistant steels under different loads were investigated. The corresponding friction coefficients under varied loads were measured and the contact stress was discussed. The results show that the tensile property and wear performance between the developed HB500 steel with lower composition cost and the commercial wear-resistant steel of a similar grade were comparable, indicating that the HB500 steel can replace the widely used commercial steel. In addition, the hardness and tensile strength of HB550 steel reached 559HB and 1874 MPa with impact toughness at −40 °C of 44.5 J/cm2 and excellent wear resistance. Moreover, the mass loss increased with increasing load from 10 N to 50 N, while it decreased when further increasing the load from 50 N to 90 N, which was different from the reported result that the mass loss monotonically increased with the load. The wear mechanism was mainly abrasive wear with a certain degree of buffering effect at lower loads, while it changed to mainly adhesive wear and oxidative wear with buffering, lubrication, and protection effects at the high load. Furthermore, the mass loss and the friction coefficient of the two developed steels were more sensitive to the load rather than the material hardness. Lastly, it was the first time to analyze and compare the changes of absolute stress of J2 and relative stress of J2 under varied wear conditions. It is interesting to find that the absolute stress of J2 was more suitable and sensitive to the wear parameters, and the influences of the applied load and the friction coefficient on the contact stress were competitive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低合金高强度马氏体耐磨钢的滑动磨损行为
研究了新开发的 HB500 和 HB550 低合金高强度马氏体耐磨钢在不同载荷下的滑动磨损特性。测量了不同载荷下相应的摩擦系数,并讨论了接触应力。结果表明,所开发的成分成本较低的 HB500 钢与类似牌号的商用耐磨钢的拉伸性能和磨损性能相当,表明 HB500 钢可以替代广泛使用的商用钢。此外,HB550 钢的硬度和抗拉强度分别达到 559HB 和 1874 MPa,在 -40 °C 时的冲击韧性为 44.5 J/cm2,具有优异的耐磨性。此外,随着载荷从 10 N 增加到 50 N,质量损失增加,而当载荷从 50 N 进一步增加到 90 N 时,质量损失减少,这与所报道的质量损失随载荷单调增加的结果不同。磨损机理在低载荷时主要是磨料磨损,并具有一定的缓冲作用,而在高载荷时则转变为主要是粘着磨损和氧化磨损,并具有缓冲、润滑和保护作用。此外,这两种钢材的质量损失和摩擦系数对载荷比对材料硬度更敏感。最后,这是首次分析和比较不同磨损条件下 J2 的绝对应力和相对应力的变化。有趣的是,J2 的绝对应力对磨损参数更为合适和敏感,而施加载荷和摩擦系数对接触应力的影响是竞争性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wear
Wear 工程技术-材料科学:综合
CiteScore
8.80
自引率
8.00%
发文量
280
审稿时长
47 days
期刊介绍: Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.
期刊最新文献
Tribo-oxidation mechanism of gradient nanostructured Inconel 625 alloy during high-temperature wear Synergetic enhancement of wear resistance of polyimide coatings through the integration of MoS2 nanoflowers and MXene nanosheets Improved corrosion resistance and tribological properties of MXene/NCDs coatings on the Ti6Al4V alloys Mechanism analysis and prediction of bull-nose cutter wear in multi-axis milling of Ti6Al4V with TiAlN coated inserts Evaluating the impact of corrosion inhibitors on grinding process efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1