Optimizing bimetallic and multimetallic Cu-based catalysts by promoters for enhanced reverse Water-Gas Shift reaction: Insights and stability assessments
{"title":"Optimizing bimetallic and multimetallic Cu-based catalysts by promoters for enhanced reverse Water-Gas Shift reaction: Insights and stability assessments","authors":"Javad Hafezi-Bakhtiari, Amin Bazyari, Mehran Rezaei, Ehsan Akbari, Elahe Babaei","doi":"10.1016/j.jcou.2024.102934","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates bimetallic and multimetallic catalysts tailored for the reverse water gas shift (RWGS) reaction. Promoting with potassium and iron, while maintaining a constant copper content of 15 wt% on γ-alumina, revealed that bimetallic catalysts containing 7.5 wt% iron and 5 wt% potassium exhibit superior catalytic activity and stability. Among the multimetallic catalysts, the optimal composition was found to be in the 15 wt% Cu-5 wt% Fe-2.5 wt% K/γ-Al<sub>2</sub>O<sub>3</sub> catalyst for the RWGS reaction. The prepared catalysts underwent assessments using various techniques such as N<sub>2</sub> adsorption-desorption, XRD, H<sub>2</sub>-TPR, CO<sub>2</sub>-TPD, and FESEM. Stability assessments conducted over 72 hours showcased sustained long-term performance for the optimized catalysts, highlighting the influential role of the hierarchical structure. Mesopores extended the catalyst lifetime by reducing permeation limits, while macropores facilitated diffusion process, enhancing selectivity and stability. This hierarchical design also improved mass transfer, amplifying reaction rates. The synthesized catalysts exhibited exceptional specificity, demonstrating 100 % selectivity for the RWGS reaction. Particularly, under H<sub>2</sub>/CO<sub>2</sub>=1, these catalysts displayed remarkable carbon dioxide conversion rates, indicating potential for enhancing Cu-based catalysts in RWGS reactions by maximizing active sites.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"88 ","pages":"Article 102934"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002695/pdfft?md5=9807b1f9a5d69b2f69ea8d38efd7f07e&pid=1-s2.0-S2212982024002695-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002695","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates bimetallic and multimetallic catalysts tailored for the reverse water gas shift (RWGS) reaction. Promoting with potassium and iron, while maintaining a constant copper content of 15 wt% on γ-alumina, revealed that bimetallic catalysts containing 7.5 wt% iron and 5 wt% potassium exhibit superior catalytic activity and stability. Among the multimetallic catalysts, the optimal composition was found to be in the 15 wt% Cu-5 wt% Fe-2.5 wt% K/γ-Al2O3 catalyst for the RWGS reaction. The prepared catalysts underwent assessments using various techniques such as N2 adsorption-desorption, XRD, H2-TPR, CO2-TPD, and FESEM. Stability assessments conducted over 72 hours showcased sustained long-term performance for the optimized catalysts, highlighting the influential role of the hierarchical structure. Mesopores extended the catalyst lifetime by reducing permeation limits, while macropores facilitated diffusion process, enhancing selectivity and stability. This hierarchical design also improved mass transfer, amplifying reaction rates. The synthesized catalysts exhibited exceptional specificity, demonstrating 100 % selectivity for the RWGS reaction. Particularly, under H2/CO2=1, these catalysts displayed remarkable carbon dioxide conversion rates, indicating potential for enhancing Cu-based catalysts in RWGS reactions by maximizing active sites.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.