Spatial and temporal characteristics of volatiles in the Cenozoic mantle beneath eastern China

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-19 DOI:10.1016/j.lithos.2024.107815
Qianling Zhou , Chenglong Yu , Yang-Yang Wang , Dongbo Tan , Erhao Shan , Dongyong Li , Xiaoxia Wang , Yigan Lu , Fengtai Tong , Yilin Xiao
{"title":"Spatial and temporal characteristics of volatiles in the Cenozoic mantle beneath eastern China","authors":"Qianling Zhou ,&nbsp;Chenglong Yu ,&nbsp;Yang-Yang Wang ,&nbsp;Dongbo Tan ,&nbsp;Erhao Shan ,&nbsp;Dongyong Li ,&nbsp;Xiaoxia Wang ,&nbsp;Yigan Lu ,&nbsp;Fengtai Tong ,&nbsp;Yilin Xiao","doi":"10.1016/j.lithos.2024.107815","DOIUrl":null,"url":null,"abstract":"<div><div>Subduction of the paleo-Pacific Plate has transported volatiles from the surface to the interior of the Earth and significantly altered the chemical and physical properties of the Cenozoic mantle beneath eastern China. However, the characteristics of volatiles other than H<sub>2</sub>O in the Cenozoic mantle remain poorly constrained. To describe the spatiotemporal distribution of volatiles, including S, Cl, and H<sub>2</sub>O, in the Cenozoic mantle beneath eastern China, we performed reheating experiments and determined the composition of olivine-hosted melt inclusions from a large area (5.9 × 10<sup>5</sup> km<sup>2</sup>) of basalts. Calculations of the mantle-source compositions indicate that the Cenozoic mantle in North China is enriched in S but deficient in H<sub>2</sub>O and Cl, relative to that in South China. The distinctive features of volatiles likely arise from the different types of recycled materials in the mantle sources (such as Cl-containing sediments, carbonates, or sulfides in the altered oceanic crust) and their different proportions (from &lt;1.7 % to 7 % of subducted sediments). Both the North China and South China mantles reached high volatile contents at 17.5–11.9 Ma, indicating that the activation of the South China mantle and the destruction of the North China Craton may have occurred simultaneously. These novel findings improve our understanding of mantle evolution beneath eastern China and will help in evaluating the contributions of slab subduction to the spatiotemporal heterogeneity of the lithospheric mantle during the Cenozoic.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024493724003293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Subduction of the paleo-Pacific Plate has transported volatiles from the surface to the interior of the Earth and significantly altered the chemical and physical properties of the Cenozoic mantle beneath eastern China. However, the characteristics of volatiles other than H2O in the Cenozoic mantle remain poorly constrained. To describe the spatiotemporal distribution of volatiles, including S, Cl, and H2O, in the Cenozoic mantle beneath eastern China, we performed reheating experiments and determined the composition of olivine-hosted melt inclusions from a large area (5.9 × 105 km2) of basalts. Calculations of the mantle-source compositions indicate that the Cenozoic mantle in North China is enriched in S but deficient in H2O and Cl, relative to that in South China. The distinctive features of volatiles likely arise from the different types of recycled materials in the mantle sources (such as Cl-containing sediments, carbonates, or sulfides in the altered oceanic crust) and their different proportions (from <1.7 % to 7 % of subducted sediments). Both the North China and South China mantles reached high volatile contents at 17.5–11.9 Ma, indicating that the activation of the South China mantle and the destruction of the North China Craton may have occurred simultaneously. These novel findings improve our understanding of mantle evolution beneath eastern China and will help in evaluating the contributions of slab subduction to the spatiotemporal heterogeneity of the lithospheric mantle during the Cenozoic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国东部地下新生代地幔中挥发物的时空特征
古太平洋板块的俯冲作用将地表的挥发物带到了地球内部,并极大地改变了中国东部地下新生代地幔的化学和物理特性。然而,对新生代地幔中除 H2O 以外的其他挥发物特征的研究仍然十分有限。为了描述中国东部新生代地幔中S、Cl和H2O等挥发物的时空分布,我们进行了再加热实验,并测定了大面积(5.9×105平方千米)玄武岩中橄榄石寄生熔融包裹体的成分。地幔源成分的计算表明,相对于华南地区,华北地区新生代地幔富含S,但缺乏H2O和Cl。挥发物的不同特征可能源于地幔源中不同类型的再循环物质(如含Cl的沉积物、碳酸盐或蚀变洋壳中的硫化物)及其不同比例(从占俯冲沉积物的1.7%到7%不等)。华北地幔和华南地幔在17.5-11.9 Ma时都达到了较高的挥发物含量,表明华南地幔的活化和华北克拉通的破坏可能是同时发生的。这些新发现加深了我们对中国东部地下地幔演化的理解,有助于评估板块俯冲对新生代岩石圈地幔时空异质性的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1