Comprehensive profiling and evaluation of free/conjugated Phytosterols in crops using chemical derivatization coupled with UHPLC-ESI-QTOF-MS/MS

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-09-19 DOI:10.1016/j.foodchem.2024.141316
Qiuhui Xu , Dan Wang , Xin Lv , Hong Chen , Fang Wei
{"title":"Comprehensive profiling and evaluation of free/conjugated Phytosterols in crops using chemical derivatization coupled with UHPLC-ESI-QTOF-MS/MS","authors":"Qiuhui Xu ,&nbsp;Dan Wang ,&nbsp;Xin Lv ,&nbsp;Hong Chen ,&nbsp;Fang Wei","doi":"10.1016/j.foodchem.2024.141316","DOIUrl":null,"url":null,"abstract":"<div><div>Phytosterols are naturally existed in crops but their detection is constrained by sensitivity and accuracy due to the inefficient analytical approaches. This study hypothesizes that an untargeted analytical method combining chemical derivatization with ultrahigh performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry can identify the various composition and contents of phytosterols in different crops. The results showed that chemical derivatization significantly enhanced intensity of phytosterols compared with non-derivatized samples. Using precursor ion scanning (PIS) of <em>m</em>/<em>z</em> 252.0690, dansyl chloride-labeled phytosterols were identified, demonstrating that rapeseeds had the highest content of total phytosterol (3981.2 ± 95.3 mg/kg), followed by sunflower seeds, flaxseeds, corn and rice, respectively. Principal component analysis revealed significant variations in phytosterol distribution among 15 crop samples, suggesting the applicability of phytosterol profile as a marker for phytosterols-contained crops. Hence, the proposed analytic approach proves high efficiency and accuracy in determining phytosterols and advances the study for phytosterol-enriched crops.</div></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624029662","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Phytosterols are naturally existed in crops but their detection is constrained by sensitivity and accuracy due to the inefficient analytical approaches. This study hypothesizes that an untargeted analytical method combining chemical derivatization with ultrahigh performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry can identify the various composition and contents of phytosterols in different crops. The results showed that chemical derivatization significantly enhanced intensity of phytosterols compared with non-derivatized samples. Using precursor ion scanning (PIS) of m/z 252.0690, dansyl chloride-labeled phytosterols were identified, demonstrating that rapeseeds had the highest content of total phytosterol (3981.2 ± 95.3 mg/kg), followed by sunflower seeds, flaxseeds, corn and rice, respectively. Principal component analysis revealed significant variations in phytosterol distribution among 15 crop samples, suggesting the applicability of phytosterol profile as a marker for phytosterols-contained crops. Hence, the proposed analytic approach proves high efficiency and accuracy in determining phytosterols and advances the study for phytosterol-enriched crops.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用化学衍生法和 UHPLC-ESI-QTOF-MS/MS 全面分析和评估农作物中的游离/共轭植物甾醇
植物甾醇天然存在于农作物中,但由于分析方法效率低下,其检测灵敏度和准确性受到限制。本研究假设化学衍生与超高效液相色谱-电喷雾四极杆飞行时间质谱相结合的非靶向分析方法可以鉴定不同作物中植物甾醇的不同成分和含量。结果表明,与未衍生化的样品相比,化学衍生化能显著提高植物甾醇的强度。利用 m/z 252.0690 的前体离子扫描(PIS),鉴定了丹酰氯标记的植物甾醇,结果表明油菜籽的总植物甾醇含量最高(3981.2 ± 95.3 mg/kg),其次分别是葵花籽、亚麻籽、玉米和水稻。主成分分析表明,植物甾醇在 15 种作物样本中的分布存在显著差异,这表明植物甾醇图谱可用作含植物甾醇作物的标记。因此,建议的分析方法证明了测定植物甾醇的高效性和准确性,并推进了对富含植物甾醇作物的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1