Salma Safrina Hashilah Harahap , Mohammad Basyuni , Bejo Slamet , Nurdin Sulistiyono , Sigit D. Sasmito , Rizka Amelia , Yuntha Bimantara , Mikrajni Harahap , Shofiyah S. Al Mustaniroh , Deni Elfiati , Virni B. Arifanti , Frida Sidik , Hayssam M. Ali
{"title":"Assessing sediment CO2 effluxes in the coastal ecosystem of North Sumatra, Indonesia","authors":"Salma Safrina Hashilah Harahap , Mohammad Basyuni , Bejo Slamet , Nurdin Sulistiyono , Sigit D. Sasmito , Rizka Amelia , Yuntha Bimantara , Mikrajni Harahap , Shofiyah S. Al Mustaniroh , Deni Elfiati , Virni B. Arifanti , Frida Sidik , Hayssam M. Ali","doi":"10.1016/j.rsma.2024.103823","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal wetlands including mangrove play a vital role in regulating the local and global carbon cycle. Coastal areas contribute greatly to the carbon exchange process due to the complex interactions that occur between the atmosphere, land, and oceans. One of the important components in coastal carbon dynamics is CO<sub>2</sub> gas exchange between soil, water and the atmosphere. This study aims to assess CO<sub>2</sub> efflux across various land covers (namely natural mangrove, restored mangrove, and converted mangroves to oil palm and aquaculture pond) in the coastal areas of North Sumatra Province, and analyze the effect of sea tides and ebbs on the rate of CO<sub>2</sub> efflux and their connection with the number and area of macrozoobenthos burrows. We applied direct sampling by using the static closed chamber method attached to portable CO<sub>2</sub> analyzer. The mean of CO<sub>2</sub> efflux in natural mangrove forest land covers was 866±585 mgCO<sub>2</sub>/m<sup>2</sup>/h during low tide conditions and 1137±792 mgCO<sub>2</sub>/m<sup>2</sup>/h during high tide conditions, followed by oil palm plantations at 760.71±341 mgCO<sub>2</sub>/m<sup>2</sup>/h, restored mangroves during low tide of 575.24±326 mgCO<sub>2</sub>/m<sup>2</sup>/h and 597.11±180 mg CO<sub>2</sub>/m<sup>2</sup>/h during high tide conditions, and the lowest was recorded in ponds at 588.55±358 mgCO<sub>2</sub>/m<sup>2</sup>/h. Further, we observed that tidal conditions affect the magnitudes of CO<sub>2</sub> efflux in natural and restored mangrove forests, and we did not observe similar pattern in oil palms and ponds since these land covers were not influenced by regular tidal input. We also observed that no significant relationship between the number and area of macrozoobenthos burrows and CO<sub>2</sub> efflux. Our findings suggest that CO<sub>2</sub> effluxes in coastal wetlands are highly dynamic and presumably driven by complex factors and therefore, understanding their magnitudes and drivers requires extensive measurement covering large spatial and temporal scales.</div></div>","PeriodicalId":21070,"journal":{"name":"Regional Studies in Marine Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies in Marine Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352485524004560","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal wetlands including mangrove play a vital role in regulating the local and global carbon cycle. Coastal areas contribute greatly to the carbon exchange process due to the complex interactions that occur between the atmosphere, land, and oceans. One of the important components in coastal carbon dynamics is CO2 gas exchange between soil, water and the atmosphere. This study aims to assess CO2 efflux across various land covers (namely natural mangrove, restored mangrove, and converted mangroves to oil palm and aquaculture pond) in the coastal areas of North Sumatra Province, and analyze the effect of sea tides and ebbs on the rate of CO2 efflux and their connection with the number and area of macrozoobenthos burrows. We applied direct sampling by using the static closed chamber method attached to portable CO2 analyzer. The mean of CO2 efflux in natural mangrove forest land covers was 866±585 mgCO2/m2/h during low tide conditions and 1137±792 mgCO2/m2/h during high tide conditions, followed by oil palm plantations at 760.71±341 mgCO2/m2/h, restored mangroves during low tide of 575.24±326 mgCO2/m2/h and 597.11±180 mg CO2/m2/h during high tide conditions, and the lowest was recorded in ponds at 588.55±358 mgCO2/m2/h. Further, we observed that tidal conditions affect the magnitudes of CO2 efflux in natural and restored mangrove forests, and we did not observe similar pattern in oil palms and ponds since these land covers were not influenced by regular tidal input. We also observed that no significant relationship between the number and area of macrozoobenthos burrows and CO2 efflux. Our findings suggest that CO2 effluxes in coastal wetlands are highly dynamic and presumably driven by complex factors and therefore, understanding their magnitudes and drivers requires extensive measurement covering large spatial and temporal scales.
期刊介绍:
REGIONAL STUDIES IN MARINE SCIENCE will publish scientifically sound papers on regional aspects of maritime and marine resources in estuaries, coastal zones, continental shelf, the seas and oceans.