Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-11 DOI:10.1016/j.apnum.2024.09.007
Teng Zhang , Ying Ma
{"title":"Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation","authors":"Teng Zhang ,&nbsp;Ying Ma","doi":"10.1016/j.apnum.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>9</mn></math></span>, we prove error bounds at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm respectively, for the proposed TSSP method, with <em>τ</em> time step and <em>h</em> mesh size. For general dimensional cases with <span><math><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, the error bounds are at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm under the assumption that the exact solution is in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>10</mn></math></span>. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>- or <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-bound of the numerical solution which implies the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the solutions including rapidly dispersion in space of high frequency waves and soliton collisions.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to Hm with m9, we prove error bounds at O(τ2+hm) and O(τ2+hm1) in L2 norm and H1 norm respectively, for the proposed TSSP method, with τ time step and h mesh size. For general dimensional cases with d=1,2,3, the error bounds are at O(τ2+hm) and O(τ2+hm2) in L2 and H2 norm under the assumption that the exact solution is in Hm with m10. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the H1- or H2-bound of the numerical solution which implies the L-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the solutions including rapidly dispersion in space of high frequency waves and soliton collisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双谐波非线性薛定谔方程时间分割正弦伪谱法的最佳误差边界
我们提出了双谐波非线性薛定谔方程(BNLS)的时间分割正弦伪谱(TSSP)方法,并建立了其最佳误差边界。在所提出的 TSSP 方法中,我们采用正弦伪谱法进行空间离散化,采用二阶斯特朗分裂法进行时间离散化。所提出的 TSSP 方法是显式和结构保留的,如时间对称、质量守恒和在离散化水平上保持原始 BNLS 的离散关系。假设一维 BNLS 的解属于 Hm,m≥9,我们证明了所提出的 TSSP 方法在 L2 准则和 H1 准则下的误差边界分别为 O(τ2+hm)和 O(τ2+hm-1),时间步长为 τ,网格大小为 h。对于 d=1,2,3的一般维数情况,假设精确解在 m≥10 的 Hm 中,误差边界在 L2 和 H2 规范下分别为 O(τ2+hm) 和 O(τ2+hm-2)。证明是基于局部截断误差的 Lie-commutator 约束、离散 Gronwall 不等式、能量法和数值解的 H1 或 H2 约束,这意味着数值解的 L∞ 约束。最后,报告了大量数值结果,以证实我们的最佳误差约束,并展示了解的丰富现象,包括高频波和孤子碰撞在空间的快速弥散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1