Jordi Grinyó , Jacopo Aguzzi , Luciano Ortenzi , Ellen Kenchington , Simona Violino , Ulrike Hanz , Andreu Santín , Tim W. Nattkemper , Furu Mienis
{"title":"What do glass sponges do when no one is looking? Vazella pourtalesii: Responses to sediment deposition, passive locomotion, and contracting behavior","authors":"Jordi Grinyó , Jacopo Aguzzi , Luciano Ortenzi , Ellen Kenchington , Simona Violino , Ulrike Hanz , Andreu Santín , Tim W. Nattkemper , Furu Mienis","doi":"10.1016/j.dsr.2024.104388","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral response of deep-sea sponges can provide crucial insights into the mechanisms shaping energy fluxes and ecosystem functioning. Although some advances have been made, the behavior of deep-sea Hexactinellid still remain widely unknown. In the present study we address the glass sponge <em>Vazella pourtalesii</em> behavior. High-temporal resolution imaging and environmental data were acquired with an autonomous lander deployed in the Sambro Bank Sponge Conservation Area (Scotian Shelf) at a depth of 150 m, representing the upper limit of this deep-sea species' distribution and what is commonly regarded as the deep sea.</div><div>For 94 days, a <em>V. pourtalesii</em> individual was monitored, providing quantitative information on its response to sediment deposition triggered by a storm, as well as on its passive locomotion and contractive behavior. Sediment was cleared from its surface within 72 h, which is highly relevant for its filtering capacity, indicating that this sponge species can cope with high suspended sediment concentrations. This enables it to occur on sedimentary environments like the Scotian Shelf. As observed in other deep-sea hexactinellids, the monitored individual engaged in rhythmic contractions, which appear to be driven by physiological process/es rather than environmental factors. During the study period, strong bottom currents (>37 cm/s) toppled and displaced the monitored individual several times. Despite changes in position and orientation that can negatively impact the filtering capacity of sponges, no signs of deterioration were observed. <em>V. pourtalesii</em>'s vase-like body morphology and attachment to cobbles, as a gravitational center, may allow it to have a more homogeneous interaction with currents which may permit them to better cope with positional changes. Overall, this study highlights that deep-sea Porifera display a wide array of phenological changes in response to both biotic and abiotic factors.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104388"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001584","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Behavioral response of deep-sea sponges can provide crucial insights into the mechanisms shaping energy fluxes and ecosystem functioning. Although some advances have been made, the behavior of deep-sea Hexactinellid still remain widely unknown. In the present study we address the glass sponge Vazella pourtalesii behavior. High-temporal resolution imaging and environmental data were acquired with an autonomous lander deployed in the Sambro Bank Sponge Conservation Area (Scotian Shelf) at a depth of 150 m, representing the upper limit of this deep-sea species' distribution and what is commonly regarded as the deep sea.
For 94 days, a V. pourtalesii individual was monitored, providing quantitative information on its response to sediment deposition triggered by a storm, as well as on its passive locomotion and contractive behavior. Sediment was cleared from its surface within 72 h, which is highly relevant for its filtering capacity, indicating that this sponge species can cope with high suspended sediment concentrations. This enables it to occur on sedimentary environments like the Scotian Shelf. As observed in other deep-sea hexactinellids, the monitored individual engaged in rhythmic contractions, which appear to be driven by physiological process/es rather than environmental factors. During the study period, strong bottom currents (>37 cm/s) toppled and displaced the monitored individual several times. Despite changes in position and orientation that can negatively impact the filtering capacity of sponges, no signs of deterioration were observed. V. pourtalesii's vase-like body morphology and attachment to cobbles, as a gravitational center, may allow it to have a more homogeneous interaction with currents which may permit them to better cope with positional changes. Overall, this study highlights that deep-sea Porifera display a wide array of phenological changes in response to both biotic and abiotic factors.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.