Virtual Multiview Fusion for Millimeter Wave Radar Point Cloud Generation

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-09-10 DOI:10.1109/LSENS.2024.3456840
Xiaotong Lu;Guanghua Liu;You Xu;Chao Xie;Lixia Xiao;Tao Jiang
{"title":"Virtual Multiview Fusion for Millimeter Wave Radar Point Cloud Generation","authors":"Xiaotong Lu;Guanghua Liu;You Xu;Chao Xie;Lixia Xiao;Tao Jiang","doi":"10.1109/LSENS.2024.3456840","DOIUrl":null,"url":null,"abstract":"Conventional millimeter wave (mmwave) point cloud generation technology suffers from information loss due to sparse scattering points on targets. Existing works generate and fuse radar data to enhance the point cloud, but they either demand datasets or consume extra resources. This letter proposes a virtual multiview fusion system for mmwave point cloud generation to attain complete target characteristics with the least resources. In our system, we set a single radar for sensing and regard radar signals relying on walls as virtual detection from multiple views. Then, we fuse target features detected from virtual views to the direct path detection to densify the point cloud. Instead of mitigation, multipath components are reserved and employed as supplements. It contains new characteristics from different perspectives, effectively compensating for the specular reflection loss without additional detection. Experiments are performed to validate the effectiveness of the proposed system in generating a dense radar point cloud.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670310/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional millimeter wave (mmwave) point cloud generation technology suffers from information loss due to sparse scattering points on targets. Existing works generate and fuse radar data to enhance the point cloud, but they either demand datasets or consume extra resources. This letter proposes a virtual multiview fusion system for mmwave point cloud generation to attain complete target characteristics with the least resources. In our system, we set a single radar for sensing and regard radar signals relying on walls as virtual detection from multiple views. Then, we fuse target features detected from virtual views to the direct path detection to densify the point cloud. Instead of mitigation, multipath components are reserved and employed as supplements. It contains new characteristics from different perspectives, effectively compensating for the specular reflection loss without additional detection. Experiments are performed to validate the effectiveness of the proposed system in generating a dense radar point cloud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毫米波雷达点云生成的虚拟多视图融合
传统的毫米波(mmwave)点云生成技术因目标散射点稀疏而导致信息丢失。现有工作通过生成和融合雷达数据来增强点云,但它们要么需要数据集,要么消耗额外资源。本文提出了一种用于毫米波点云生成的虚拟多视图融合系统,以最少的资源获得完整的目标特征。在我们的系统中,我们设置单个雷达进行感测,并将依靠墙壁的雷达信号视为来自多个视图的虚拟检测。然后,我们将从虚拟视图检测到的目标特征与直接路径检测相融合,使点云更加密集。保留多径成分,并将其作为补充,而不是缓解。它包含来自不同视角的新特征,可有效补偿镜面反射损失,而无需额外检测。实验验证了所提系统在生成密集雷达点云方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Ultrasensitive Detection of TBI-Specific GFAP Biomarker in Human Plasma Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1