Yan Zou, Lingfei Cao, Xiaodong Wu, Chenglin Mou, Songbai Tang
{"title":"Revealing the coarsening behavior of precipitates and its effect on the thermal stability in Tʹ and ηʹ dual-phase strengthened Al-Zn-Mg-Cu alloys","authors":"Yan Zou, Lingfei Cao, Xiaodong Wu, Chenglin Mou, Songbai Tang","doi":"10.1016/j.jmst.2024.09.010","DOIUrl":null,"url":null,"abstract":"High-strength Al-Zn-Mg-Cu alloys are widely utilized, but their strength deteriorates as strengthening precipitates coarsen rapidly at elevated temperatures, limiting their applications above 150°C. This study systematically investigates the microstructure evolution and its impact on the properties of peak-aged Al-Zn-Mg-Cu alloys with varying Zn/Mg ratios during thermal exposure at a series of temperatures from 150 to 300°C for 500 h. The results reveal that alloys A1 and A2 with an optimal Zn/Mg ratio (1.50−2.14) and relatively lower (Zn + Mg) content (7.0−8.8 wt.%), exhibit superior heat resistance properties compared to the other three alloys. Despite having lower strength relative to alloys with higher solute content, peak-aged alloys A1 and A2 retain the highest strength after thermal exposure. This performance is attributed to the high proportion (over 80%) of T′/T phases in the precipitates for alloys A1 and A2, which demonstrate better thermal stability in comparison to η′/η phases. Additionally, the lower solute content reduces the driving force for diffusion of Zn and Mg atoms, thus inhibiting the coarsening of precipitates. Moreover, the study elucidates that the coarsening mechanism of precipitates transitions from interfacial diffusion control at 150°C to matrix diffusion control at 200−300°C. These insights into the composition-dependent coarsening behavior of precipitates in dual-phase strengthened Al-Zn-Mg-Cu alloys offer valuable guidance for designing heat-resistant aluminum alloys with enhanced performance at elevated temperatures.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"46 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-strength Al-Zn-Mg-Cu alloys are widely utilized, but their strength deteriorates as strengthening precipitates coarsen rapidly at elevated temperatures, limiting their applications above 150°C. This study systematically investigates the microstructure evolution and its impact on the properties of peak-aged Al-Zn-Mg-Cu alloys with varying Zn/Mg ratios during thermal exposure at a series of temperatures from 150 to 300°C for 500 h. The results reveal that alloys A1 and A2 with an optimal Zn/Mg ratio (1.50−2.14) and relatively lower (Zn + Mg) content (7.0−8.8 wt.%), exhibit superior heat resistance properties compared to the other three alloys. Despite having lower strength relative to alloys with higher solute content, peak-aged alloys A1 and A2 retain the highest strength after thermal exposure. This performance is attributed to the high proportion (over 80%) of T′/T phases in the precipitates for alloys A1 and A2, which demonstrate better thermal stability in comparison to η′/η phases. Additionally, the lower solute content reduces the driving force for diffusion of Zn and Mg atoms, thus inhibiting the coarsening of precipitates. Moreover, the study elucidates that the coarsening mechanism of precipitates transitions from interfacial diffusion control at 150°C to matrix diffusion control at 200−300°C. These insights into the composition-dependent coarsening behavior of precipitates in dual-phase strengthened Al-Zn-Mg-Cu alloys offer valuable guidance for designing heat-resistant aluminum alloys with enhanced performance at elevated temperatures.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.