Significant Power Consumption Reduction and Speed Boosting in Phase Change Memory with Nanocurrent Channels

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-24 DOI:10.1021/acs.nanolett.4c03900
Yuntao Zeng, Ge Ma, Han Li, Xiaomin Cheng, Xiangshui Miao
{"title":"Significant Power Consumption Reduction and Speed Boosting in Phase Change Memory with Nanocurrent Channels","authors":"Yuntao Zeng, Ge Ma, Han Li, Xiaomin Cheng, Xiangshui Miao","doi":"10.1021/acs.nanolett.4c03900","DOIUrl":null,"url":null,"abstract":"The excessive power consumption is challenging for phase change memory (PCM) on its way to becoming universal memory in complex hierarchies of memory systems. Here, from the perspective of device structure, by adding a nanocurrent-channel (NCC) layer between the electrode layer and phase change layer, a RESET power consumption reduction by more than 95% and 10 times faster SET speed were realized simultaneously. Through the first principle calculations, Au and SiO<sub>2</sub> were screened as the metal and insulating matrix material of NCC layer, respectively. Our PCM device with a Au-SiO<sub>2</sub> NCC layer shows an ultralow RESET power consumption, down to 381 fJ, and an ultrafast SET speed (8 ns). Much higher current density near NCC in the phase change layer and thermal barrier effect of insulating matrix material were confirmed by finite element analysis (FEA), and the role of Au nanochannels was revealed by transmission electron microscopy (TEM). Our NCC layer structure provides a simple and practicable method to significantly decrease PCM power consumption.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03900","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The excessive power consumption is challenging for phase change memory (PCM) on its way to becoming universal memory in complex hierarchies of memory systems. Here, from the perspective of device structure, by adding a nanocurrent-channel (NCC) layer between the electrode layer and phase change layer, a RESET power consumption reduction by more than 95% and 10 times faster SET speed were realized simultaneously. Through the first principle calculations, Au and SiO2 were screened as the metal and insulating matrix material of NCC layer, respectively. Our PCM device with a Au-SiO2 NCC layer shows an ultralow RESET power consumption, down to 381 fJ, and an ultrafast SET speed (8 ns). Much higher current density near NCC in the phase change layer and thermal barrier effect of insulating matrix material were confirmed by finite element analysis (FEA), and the role of Au nanochannels was revealed by transmission electron microscopy (TEM). Our NCC layer structure provides a simple and practicable method to significantly decrease PCM power consumption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米电流通道大幅降低相变存储器功耗并提高速度
在复杂的分层存储器系统中,相变存储器(PCM)在成为通用存储器的道路上面临着功耗过高的挑战。本文从器件结构的角度出发,通过在电极层和相变层之间添加纳米电流通道(NCC)层,同时实现了 RESET 功耗降低 95% 以上和 SET 速度提高 10 倍的目标。通过第一原理计算,筛选出金和二氧化硅分别作为 NCC 层的金属和绝缘基体材料。采用金-二氧化硅 NCC 层的 PCM 器件具有超低的 RESET 功耗(低至 381 fJ)和超快的 SET 速度(8 ns)。有限元分析(FEA)证实了相变层中 NCC 附近更高的电流密度和绝缘基体材料的热障效应,透射电子显微镜(TEM)揭示了金纳米通道的作用。我们的 NCC 层结构为大幅降低 PCM 功耗提供了一种简单实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1