Yuntao Zeng, Ge Ma, Han Li, Xiaomin Cheng, Xiangshui Miao
{"title":"Significant Power Consumption Reduction and Speed Boosting in Phase Change Memory with Nanocurrent Channels","authors":"Yuntao Zeng, Ge Ma, Han Li, Xiaomin Cheng, Xiangshui Miao","doi":"10.1021/acs.nanolett.4c03900","DOIUrl":null,"url":null,"abstract":"The excessive power consumption is challenging for phase change memory (PCM) on its way to becoming universal memory in complex hierarchies of memory systems. Here, from the perspective of device structure, by adding a nanocurrent-channel (NCC) layer between the electrode layer and phase change layer, a RESET power consumption reduction by more than 95% and 10 times faster SET speed were realized simultaneously. Through the first principle calculations, Au and SiO<sub>2</sub> were screened as the metal and insulating matrix material of NCC layer, respectively. Our PCM device with a Au-SiO<sub>2</sub> NCC layer shows an ultralow RESET power consumption, down to 381 fJ, and an ultrafast SET speed (8 ns). Much higher current density near NCC in the phase change layer and thermal barrier effect of insulating matrix material were confirmed by finite element analysis (FEA), and the role of Au nanochannels was revealed by transmission electron microscopy (TEM). Our NCC layer structure provides a simple and practicable method to significantly decrease PCM power consumption.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03900","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The excessive power consumption is challenging for phase change memory (PCM) on its way to becoming universal memory in complex hierarchies of memory systems. Here, from the perspective of device structure, by adding a nanocurrent-channel (NCC) layer between the electrode layer and phase change layer, a RESET power consumption reduction by more than 95% and 10 times faster SET speed were realized simultaneously. Through the first principle calculations, Au and SiO2 were screened as the metal and insulating matrix material of NCC layer, respectively. Our PCM device with a Au-SiO2 NCC layer shows an ultralow RESET power consumption, down to 381 fJ, and an ultrafast SET speed (8 ns). Much higher current density near NCC in the phase change layer and thermal barrier effect of insulating matrix material were confirmed by finite element analysis (FEA), and the role of Au nanochannels was revealed by transmission electron microscopy (TEM). Our NCC layer structure provides a simple and practicable method to significantly decrease PCM power consumption.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.