On the Optimality of Target-Data-Dependent Kernel Greedy Interpolation in Sobolev Reproducing Kernel Hilbert Spaces

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-09-23 DOI:10.1137/23m1587956
Gabriele Santin, Tizian Wenzel, Bernard Haasdonk
{"title":"On the Optimality of Target-Data-Dependent Kernel Greedy Interpolation in Sobolev Reproducing Kernel Hilbert Spaces","authors":"Gabriele Santin, Tizian Wenzel, Bernard Haasdonk","doi":"10.1137/23m1587956","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2249-2275, October 2024. <br/> Abstract. Kernel interpolation is a versatile tool for the approximation of functions from data, and it can be proven to have some optimality properties when used with kernels related to certain Sobolev spaces. In the context of interpolation, the selection of optimal function sampling locations is a central problem, both from a practical perspective and as an interesting theoretical question. Greedy interpolation algorithms provide a viable solution for this task, being efficient to run and provably accurate in their approximation. In this paper we close a gap that is present in the convergence theory for these algorithms by employing a recent result on general greedy algorithms. This modification leads to new convergence rates which match the optimal ones when restricted to the [math]-greedy target-data-independent selection rule and can additionally be proven to be optimal when they fully exploit adaptivity ([math]-greedy). Other than closing this gap, the new results have some significance in the broader setting of the optimality of general approximation algorithms in reproducing kernel Hilbert spaces, as they allow us to compare adaptive interpolation with nonadaptive best nonlinear approximation.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"31 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1587956","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2249-2275, October 2024.
Abstract. Kernel interpolation is a versatile tool for the approximation of functions from data, and it can be proven to have some optimality properties when used with kernels related to certain Sobolev spaces. In the context of interpolation, the selection of optimal function sampling locations is a central problem, both from a practical perspective and as an interesting theoretical question. Greedy interpolation algorithms provide a viable solution for this task, being efficient to run and provably accurate in their approximation. In this paper we close a gap that is present in the convergence theory for these algorithms by employing a recent result on general greedy algorithms. This modification leads to new convergence rates which match the optimal ones when restricted to the [math]-greedy target-data-independent selection rule and can additionally be proven to be optimal when they fully exploit adaptivity ([math]-greedy). Other than closing this gap, the new results have some significance in the broader setting of the optimality of general approximation algorithms in reproducing kernel Hilbert spaces, as they allow us to compare adaptive interpolation with nonadaptive best nonlinear approximation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论索博廖夫重现核希尔伯特空间中目标数据依赖核贪婪插值的最优性
SIAM 数值分析期刊》第 62 卷第 5 期第 2249-2275 页,2024 年 10 月。 摘要核插值是一种从数据中逼近函数的通用工具,当使用与某些 Sobolev 空间相关的核时,可以证明它具有某些最优性。在内插法中,最佳函数采样位置的选择是一个核心问题,无论是从实用角度还是作为一个有趣的理论问题都是如此。贪婪插值算法为这一任务提供了可行的解决方案,不仅运行高效,而且近似精确。在本文中,我们采用了关于一般贪婪算法的最新结果,从而弥补了这些算法在收敛理论方面的不足。这一修改带来了新的收敛率,当局限于[数学]贪婪目标数据无关选择规则时,新收敛率与最优收敛率相匹配;当它们完全利用适应性([数学]贪婪)时,新收敛率也能被证明为最优收敛率。除了缩小这一差距之外,新结果还对再现核希尔伯特空间中一般近似算法的最优性这一更广泛的问题具有重要意义,因为它们允许我们比较自适应插值与非自适应最佳非线性近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1