Efficient and Privacy-Preserving Encode-Based Range Query Over Encrypted Cloud Data

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-09-23 DOI:10.1109/TIFS.2024.3465928
Yanrong Liang;Jianfeng Ma;Yinbin Miao;Yuan Su;Robert H. Deng
{"title":"Efficient and Privacy-Preserving Encode-Based Range Query Over Encrypted Cloud Data","authors":"Yanrong Liang;Jianfeng Ma;Yinbin Miao;Yuan Su;Robert H. Deng","doi":"10.1109/TIFS.2024.3465928","DOIUrl":null,"url":null,"abstract":"Privacy-preserving range query, which allows the server to implement secure and efficient range query on encrypted data, has been widely studied in recent years. Existing privacy-preserving range query schemes can realize effective range query, but usually suffer from the low efficiency and security. In order to solve the above issues, we propose an Efficient and Privacy-preserving encode-based Range Query over encrypted cloud data (namely basic EPRQ), which encodes the data and range by using Range Encode (REncoder), and then encrypts the codes via Additional Symmetric-Key Hidden Vector Encryption (ASHVE) technology. The basic EPRQ can achieve effective range query while ensuring privacy protection. Then, we split the codes to reduce the storage cost. We further propose an improved scheme, EPRQ+, which constructs a binary tree-based index to achieve faster-than-linear retrieval. Finally, our formal security analysis proves that our schemes are secure against Indistinguishability under Chosen-Plaintext Attack (IND-CPA), and extensive experiments demonstrate that our schemes are feasible in practice, where EPRQ+ scheme improves the storage efficiency by about 4 times and the query efficiency by about 8 times compared to the basic EPRQ.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"19 ","pages":"9085-9099"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10685515/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy-preserving range query, which allows the server to implement secure and efficient range query on encrypted data, has been widely studied in recent years. Existing privacy-preserving range query schemes can realize effective range query, but usually suffer from the low efficiency and security. In order to solve the above issues, we propose an Efficient and Privacy-preserving encode-based Range Query over encrypted cloud data (namely basic EPRQ), which encodes the data and range by using Range Encode (REncoder), and then encrypts the codes via Additional Symmetric-Key Hidden Vector Encryption (ASHVE) technology. The basic EPRQ can achieve effective range query while ensuring privacy protection. Then, we split the codes to reduce the storage cost. We further propose an improved scheme, EPRQ+, which constructs a binary tree-based index to achieve faster-than-linear retrieval. Finally, our formal security analysis proves that our schemes are secure against Indistinguishability under Chosen-Plaintext Attack (IND-CPA), and extensive experiments demonstrate that our schemes are feasible in practice, where EPRQ+ scheme improves the storage efficiency by about 4 times and the query efficiency by about 8 times compared to the basic EPRQ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加密云数据的高效和隐私保护编码范围查询
隐私保护范围查询允许服务器在加密数据上实现安全高效的范围查询,近年来已被广泛研究。现有的隐私保护范围查询方案可以实现有效的范围查询,但通常存在效率和安全性较低的问题。为了解决上述问题,我们提出了一种基于编码的加密云数据高效和隐私保护范围查询(即基本 EPRQ),它通过使用范围编码器(REncoder)对数据和范围进行编码,然后通过附加对称密钥隐藏矢量加密(ASHVE)技术对编码进行加密。基本的 EPRQ 可以实现有效的范围查询,同时确保隐私保护。然后,我们对代码进行拆分,以降低存储成本。我们进一步提出了一种改进方案--EPRQ+,它构建了一个基于二叉树的索引,以实现比线性检索更快的速度。最后,我们的形式安全性分析证明,我们的方案可以安全地抵御 "选择纯文本攻击"(IND-CPA),大量实验证明我们的方案在实践中是可行的,与基本 EPRQ 相比,EPRQ+ 方案的存储效率提高了约 4 倍,查询效率提高了约 8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Attackers Are Not the Same! Unveiling the Impact of Feature Distribution on Label Inference Attacks Backdoor Online Tracing With Evolving Graphs LHADRO: A Robust Control Framework for Autonomous Vehicles Under Cyber-Physical Attacks Towards Mobile Palmprint Recognition via Multi-view Hierarchical Graph Learning Succinct Hash-based Arbitrary-Range Proofs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1