Min-Seok Choi , Jae-Sang Hong , Do-Hoon Lee , Young Sik Lee
{"title":"MicroRNA miR-199a-3p alleviates liver fibrosis by targeting CDK17 in activated hepatic stellate cells","authors":"Min-Seok Choi , Jae-Sang Hong , Do-Hoon Lee , Young Sik Lee","doi":"10.1016/j.bbrc.2024.150727","DOIUrl":null,"url":null,"abstract":"<div><div>Liver fibrosis, a common feature of most chronic liver diseases, poses significant health risks and results from various etiologies. While microRNAs (miRNAs) have demonstrated promising anti-fibrotic potential through the direct regulation of target genes, their therapeutic mechanisms remain incompletely understood. In this study, we identified miR-199a, initially discovered in anti-liver fibrotic exosomes, as a key modulator that alleviates thioacetamide-induced liver fibrosis in a mouse model. Consistent with its <em>in vivo</em> effects, treatment with an miR-199a mimic effectively inhibited the activation and function of human hepatic stellate cells (HSCs)-central drivers of liver fibrosis-as well as HSC proliferation and viability <em>in vitro</em>. Notably, miR-199a-3p exerted these anti-fibrotic effects by directly downregulating its biologically relevant target, <em>cyclin-dependent kinase 17</em> (<em>CDK17</em>). Depletion of CDK17 alone in activated HSCs was sufficient to suppress their activation, function, proliferation, and viability, mirroring the effects of miR-199a mimic treatment. Conversely, overexpression of <em>CDK17</em> reversed all cellular effects induced by miR-199a mimic treatment. Our findings highlight the miR-199a-3p-<em>CDK17</em> regulatory axis and suggest that targeting CDK17 in activated HSCs could be a promising therapeutic strategy for liver fibrosis.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24012634","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver fibrosis, a common feature of most chronic liver diseases, poses significant health risks and results from various etiologies. While microRNAs (miRNAs) have demonstrated promising anti-fibrotic potential through the direct regulation of target genes, their therapeutic mechanisms remain incompletely understood. In this study, we identified miR-199a, initially discovered in anti-liver fibrotic exosomes, as a key modulator that alleviates thioacetamide-induced liver fibrosis in a mouse model. Consistent with its in vivo effects, treatment with an miR-199a mimic effectively inhibited the activation and function of human hepatic stellate cells (HSCs)-central drivers of liver fibrosis-as well as HSC proliferation and viability in vitro. Notably, miR-199a-3p exerted these anti-fibrotic effects by directly downregulating its biologically relevant target, cyclin-dependent kinase 17 (CDK17). Depletion of CDK17 alone in activated HSCs was sufficient to suppress their activation, function, proliferation, and viability, mirroring the effects of miR-199a mimic treatment. Conversely, overexpression of CDK17 reversed all cellular effects induced by miR-199a mimic treatment. Our findings highlight the miR-199a-3p-CDK17 regulatory axis and suggest that targeting CDK17 in activated HSCs could be a promising therapeutic strategy for liver fibrosis.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics