Peiyuan Yu , Ying Zhou , Xiujun Sun , Hongqiang Sang , Shuai Zhang
{"title":"Station-keeping strategy for wave gliders considering obstacle area","authors":"Peiyuan Yu , Ying Zhou , Xiujun Sun , Hongqiang Sang , Shuai Zhang","doi":"10.1016/j.conengprac.2024.106093","DOIUrl":null,"url":null,"abstract":"<div><div>An obstacle mode station-keeping strategy that considers obstacles in the station-keeping center area is proposed for wave gliders (WGs) to cope with special applications such as oil spill monitoring on drilling platforms and observation around the island. Different from the traditional station-keeping strategy which requires closing in the preset position as much as possible, this strategy uses the adaptive integral line of sight (AILOS) algorithm to make the WG sail around the preset obstacle area. A partitioning control strategy based on distance error is introduced to divide three areas according to the risk level: warning area, escape area and obstacle area. A tan-type barrier Lyapunov function (BLF) is introduced into the warning area control method to determine the boundary. To avoid the potential risk of collision, the escape area control strategy is to make the WG move away from the obstacle area as quickly as possible. Simulation and sea trial results verified the capability of the proposed station-keeping strategy in a stable ocean environment and the station-keeping safety of the WG using this strategy under extreme situations.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106093"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002521","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
An obstacle mode station-keeping strategy that considers obstacles in the station-keeping center area is proposed for wave gliders (WGs) to cope with special applications such as oil spill monitoring on drilling platforms and observation around the island. Different from the traditional station-keeping strategy which requires closing in the preset position as much as possible, this strategy uses the adaptive integral line of sight (AILOS) algorithm to make the WG sail around the preset obstacle area. A partitioning control strategy based on distance error is introduced to divide three areas according to the risk level: warning area, escape area and obstacle area. A tan-type barrier Lyapunov function (BLF) is introduced into the warning area control method to determine the boundary. To avoid the potential risk of collision, the escape area control strategy is to make the WG move away from the obstacle area as quickly as possible. Simulation and sea trial results verified the capability of the proposed station-keeping strategy in a stable ocean environment and the station-keeping safety of the WG using this strategy under extreme situations.
为波浪滑翔机(WGs)提出了一种障碍物模式定点策略,该策略考虑了定点中心区域的障碍物,以应对钻井平台溢油监测和环岛观测等特殊应用。传统的定点保持策略要求尽可能地靠近预设位置,与之不同的是,该策略采用自适应整体视线(AILOS)算法,使波浪滑翔机绕着预设障碍物区域航行。引入基于距离误差的分区控制策略,根据风险等级划分三个区域:警告区、逃逸区和障碍区。警告区控制方法中引入了 tan 型障碍物 Lyapunov 函数(BLF)来确定边界。为避免潜在的碰撞风险,逃逸区控制策略是使 WG 尽快远离障碍区。仿真和海试结果验证了所提出的驻留策略在稳定海洋环境中的能力,以及在极端情况下使用该策略的 WG 的驻留安全性。
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.