Junjun Guo , Peng Liu , William L. Roberts , Hong G. Im
{"title":"Effect of gravity and pressure on soot formation in laminar inverse diffusion flames at elevated pressures","authors":"Junjun Guo , Peng Liu , William L. Roberts , Hong G. Im","doi":"10.1016/j.combustflame.2024.113747","DOIUrl":null,"url":null,"abstract":"<div><div>Inverse diffusion flame (IDF) configuration, where the oxidizer is surrounded by fuel, is commonly used in reforming of hydrocarbon fuels for hydrogen production through the autothermal reforming and partial oxidation processes. Understanding the mechanism of soot formation in IDF is crucial for achieving efficient and environmentally friendly hydrogen production. In this study, high-fidelity numerical simulations were conducted to investigate the effects of pressure and gravity on the soot formation in a laminar IDF configuration at pressures up to 20 bar. The chemical kinetic models with detailed polycyclic aromatic hydrocarbons (PAH) pathways and an empirical reactive soot inception model are employed. The simulation results agreed well with experimental measurements, showing consistency in flame height, PAH concentration, and soot volume fraction. The simulations accurately reproduced the spatial distributions of PAHs and soot in the IDF, and quantitatively captured the linear increase in peak soot volume fraction with pressure. The linear relationship is mainly attributed to the linear increase in the PAH concentration, driven by changes in density due to pressure increase. Moreover, compared to zero gravity condition, higher flame temperature and radical concentrations were observed in normal gravity, leading to higher soot formation rates. However, buoyancy accelerates fluid movement, reducing residence time and ultimately suppressing soot formation in normal gravity conditions.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113747"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Inverse diffusion flame (IDF) configuration, where the oxidizer is surrounded by fuel, is commonly used in reforming of hydrocarbon fuels for hydrogen production through the autothermal reforming and partial oxidation processes. Understanding the mechanism of soot formation in IDF is crucial for achieving efficient and environmentally friendly hydrogen production. In this study, high-fidelity numerical simulations were conducted to investigate the effects of pressure and gravity on the soot formation in a laminar IDF configuration at pressures up to 20 bar. The chemical kinetic models with detailed polycyclic aromatic hydrocarbons (PAH) pathways and an empirical reactive soot inception model are employed. The simulation results agreed well with experimental measurements, showing consistency in flame height, PAH concentration, and soot volume fraction. The simulations accurately reproduced the spatial distributions of PAHs and soot in the IDF, and quantitatively captured the linear increase in peak soot volume fraction with pressure. The linear relationship is mainly attributed to the linear increase in the PAH concentration, driven by changes in density due to pressure increase. Moreover, compared to zero gravity condition, higher flame temperature and radical concentrations were observed in normal gravity, leading to higher soot formation rates. However, buoyancy accelerates fluid movement, reducing residence time and ultimately suppressing soot formation in normal gravity conditions.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.