Mingzhe Fu , Yuanmao Zheng , Changzhao Qian , Qiuhua He , Yuanrong He , Chenyan Wei , Kexin Yang , Wei Zhao
{"title":"Spatiotemporal evolution and driving mechanism of Dongting Lake based on 2005–2020 multi-source remote sensing data","authors":"Mingzhe Fu , Yuanmao Zheng , Changzhao Qian , Qiuhua He , Yuanrong He , Chenyan Wei , Kexin Yang , Wei Zhao","doi":"10.1016/j.ecoinf.2024.102822","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the largest inland lakes in China, Dongting Lake has attracted widespread attention owing to its rich natural resources, unique geographical landscape, and important ecological functions. Recently, Dongting Lake has experienced phenomena such as an early dry season and backflow during the flood season. Multi-source remote sensing data and the normalised difference water index (NDWI) threshold method were used to systematically analyse the water area of the lake from 2005 to 2020. Additionally, it employed a centre of gravity migration model and a geographic detector model to investigate the lake's evolution patterns and driving mechanisms. The research identified notable fluctuations in Dongting Lake's water area during this period, with a particularly sharp decline in 2006—from 1509.74 km<sup>2</sup> to 815 km<sup>2</sup>, marking a decrease of 694.74 km<sup>2</sup> and a shrinkage rate of 46.01 %. Spatial analysis indicated that the centre of gravity of these water areas changed primarily between Nandashan Town, the Dongting Lake Management Committee, Wanzihu Township, and Qingtan Township, underscoring their significant influence on lake dynamics, including runoff, surface water availability, sediment deposition, and precipitation, all of which displayed strong positive correlations (Pearson coefficients of 0.57, 0.68, and 0.63, respectively), whereas population density showed a negative correlation (Pearson coefficient of −0.56). Furthermore, the study highlighted the substantial impact of the Digital Elevation Model (DEM) and its interaction with slope and aspect on Dongting Lake's evolution, with Q values of 0.537 and 0.543, respectively, emphasising their critical roles in shaping lake area changes and providing a crucial scientific basis for enhancing the understanding and effective management of water resources in the Dongting Lake Basin through comprehensive analysis of its spatiotemporal evolution and driving mechanisms.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003649/pdfft?md5=7c5aa5f56347f8489f910ec55f75d4d6&pid=1-s2.0-S1574954124003649-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003649","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the largest inland lakes in China, Dongting Lake has attracted widespread attention owing to its rich natural resources, unique geographical landscape, and important ecological functions. Recently, Dongting Lake has experienced phenomena such as an early dry season and backflow during the flood season. Multi-source remote sensing data and the normalised difference water index (NDWI) threshold method were used to systematically analyse the water area of the lake from 2005 to 2020. Additionally, it employed a centre of gravity migration model and a geographic detector model to investigate the lake's evolution patterns and driving mechanisms. The research identified notable fluctuations in Dongting Lake's water area during this period, with a particularly sharp decline in 2006—from 1509.74 km2 to 815 km2, marking a decrease of 694.74 km2 and a shrinkage rate of 46.01 %. Spatial analysis indicated that the centre of gravity of these water areas changed primarily between Nandashan Town, the Dongting Lake Management Committee, Wanzihu Township, and Qingtan Township, underscoring their significant influence on lake dynamics, including runoff, surface water availability, sediment deposition, and precipitation, all of which displayed strong positive correlations (Pearson coefficients of 0.57, 0.68, and 0.63, respectively), whereas population density showed a negative correlation (Pearson coefficient of −0.56). Furthermore, the study highlighted the substantial impact of the Digital Elevation Model (DEM) and its interaction with slope and aspect on Dongting Lake's evolution, with Q values of 0.537 and 0.543, respectively, emphasising their critical roles in shaping lake area changes and providing a crucial scientific basis for enhancing the understanding and effective management of water resources in the Dongting Lake Basin through comprehensive analysis of its spatiotemporal evolution and driving mechanisms.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.