Learning-based joint recommendation, caching, and transmission optimization for cooperative edge video caching in Internet of Vehicles

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-09-23 DOI:10.1016/j.adhoc.2024.103667
Zhipeng Cheng , Lu Liu , Minghui Liwang , Ning Chen , Xuwei Fan
{"title":"Learning-based joint recommendation, caching, and transmission optimization for cooperative edge video caching in Internet of Vehicles","authors":"Zhipeng Cheng ,&nbsp;Lu Liu ,&nbsp;Minghui Liwang ,&nbsp;Ning Chen ,&nbsp;Xuwei Fan","doi":"10.1016/j.adhoc.2024.103667","DOIUrl":null,"url":null,"abstract":"<div><div>In an era dominated by multimedia information, achieving efficient video transmission in the Internet of Vehicles (IoV) is crucial because of the inherent bandwidth constraints and network volatility within vehicular environments. In this paper, we propose a cooperative edge video caching framework designed to enhance video delivery efficiency in IoV by integrating joint recommendation, caching, and transmission optimization. Leveraging deep reinforcement learning with the discrete soft actor–critic algorithm, our methodology dynamically adapts to fluctuating network conditions and diverse user preferences, aiming to optimize content delivery efficiency and quality of experience. The proposed approach combines recommendation and caching strategies with transmission optimization to provide a comprehensive solution for high-performance video services. Extensive simulation results demonstrate that our framework significantly outperforms traditional baseline methods, achieving superior outcomes in terms of service utility, delivery rate, and delay reduction. These results highlight the robust potential of our solution to facilitate seamless and high-quality video experiences in the complex and dynamic landscape of vehicular networks, advancing the capabilities of IoV content delivery.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002786","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In an era dominated by multimedia information, achieving efficient video transmission in the Internet of Vehicles (IoV) is crucial because of the inherent bandwidth constraints and network volatility within vehicular environments. In this paper, we propose a cooperative edge video caching framework designed to enhance video delivery efficiency in IoV by integrating joint recommendation, caching, and transmission optimization. Leveraging deep reinforcement learning with the discrete soft actor–critic algorithm, our methodology dynamically adapts to fluctuating network conditions and diverse user preferences, aiming to optimize content delivery efficiency and quality of experience. The proposed approach combines recommendation and caching strategies with transmission optimization to provide a comprehensive solution for high-performance video services. Extensive simulation results demonstrate that our framework significantly outperforms traditional baseline methods, achieving superior outcomes in terms of service utility, delivery rate, and delay reduction. These results highlight the robust potential of our solution to facilitate seamless and high-quality video experiences in the complex and dynamic landscape of vehicular networks, advancing the capabilities of IoV content delivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的联合推荐、缓存和传输优化,用于车联网中的合作边缘视频缓存
在多媒体信息占主导地位的时代,由于车辆环境中固有的带宽限制和网络不稳定性,在车联网(IoV)中实现高效视频传输至关重要。在本文中,我们提出了一种合作式边缘视频缓存框架,旨在通过整合联合推荐、缓存和传输优化来提高 IoV 中的视频传输效率。我们的方法利用深度强化学习和离散软演员批评算法,动态适应波动的网络条件和多样化的用户偏好,旨在优化内容传输效率和体验质量。所提出的方法将推荐和缓存策略与传输优化相结合,为高性能视频服务提供了全面的解决方案。广泛的模拟结果表明,我们的框架明显优于传统的基准方法,在服务效用、传输速率和延迟减少方面都取得了卓越的成果。这些结果凸显了我们的解决方案在复杂多变的车载网络环境中促进无缝和高质量视频体验的强大潜力,从而推动了物联网内容交付能力的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
Transitive reasoning: A high-performance computing model for significant pattern discovery in cognitive IoT sensor network Deep learning with synthetic data for wireless NLOS positioning with a single base station ADRP-DQL: An adaptive distributed routing protocol for underwater acoustic sensor networks using deep Q-learning A context-aware zero trust-based hybrid approach to IoT-based self-driving vehicles security BLE-based sensors for privacy-enabled contagious disease monitoring with zero trust architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1