Relationship of shoulder internal and external rotation peak force and rate of force development to throwing velocity in high school and collegiate pitchers

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2024-09-21 DOI:10.1016/j.jbiomech.2024.112339
{"title":"Relationship of shoulder internal and external rotation peak force and rate of force development to throwing velocity in high school and collegiate pitchers","authors":"","doi":"10.1016/j.jbiomech.2024.112339","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this research was to characterize the difference between high school (HS) and collegiate pitcher’s throwing velocity, shoulder internal (IR) and external rotator (ER) maximum strength (Fmax) and rate of force development (RFD) and explore relationships between these measures. Competitive HS and collegiate pitchers (n = 26) participated in a single session assessment in which shoulder rotator isometric Fmax and RFD were quantified via a portable strain gauge device and throwing velocity via radar. Paired t-tests, stepwise linear regression models and correlational analyses were used to answer the questions of interest. No significant differences (p &gt; 0.05) in pitching velocity were observed between HS and collegiate pitchers, and all pitchers were pooled into one sample for subsequent analyses. For both IR and ER models, the explained variance of Fmax with throwing velocity was small (R<sup>2</sup> = 0.12–0.13). RFD and arm length did not contribute to the models. Large correlations (r ≥ 0.50; p &lt; 0.001) were observed between IR and ER for Fmax and RFD measures, as well as between Fmax and RFD for IR and ER. In terms of throwing velocity, having strong IR and ER Fmax capabilities would seem more important than the ability to express force quickly in this cohort.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021929024004172/pdfft?md5=b01b412f31a9e28adc57363ad528e727&pid=1-s2.0-S0021929024004172-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this research was to characterize the difference between high school (HS) and collegiate pitcher’s throwing velocity, shoulder internal (IR) and external rotator (ER) maximum strength (Fmax) and rate of force development (RFD) and explore relationships between these measures. Competitive HS and collegiate pitchers (n = 26) participated in a single session assessment in which shoulder rotator isometric Fmax and RFD were quantified via a portable strain gauge device and throwing velocity via radar. Paired t-tests, stepwise linear regression models and correlational analyses were used to answer the questions of interest. No significant differences (p > 0.05) in pitching velocity were observed between HS and collegiate pitchers, and all pitchers were pooled into one sample for subsequent analyses. For both IR and ER models, the explained variance of Fmax with throwing velocity was small (R2 = 0.12–0.13). RFD and arm length did not contribute to the models. Large correlations (r ≥ 0.50; p < 0.001) were observed between IR and ER for Fmax and RFD measures, as well as between Fmax and RFD for IR and ER. In terms of throwing velocity, having strong IR and ER Fmax capabilities would seem more important than the ability to express force quickly in this cohort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高中生和大学生投手的肩关节内旋和外旋峰值力量以及力量发展速度与投掷速度的关系
本研究的目的是描述高中(HS)和大学投手的投掷速度、肩部内旋(IR)和外旋(ER)最大力量(Fmax)和力量发展速度(RFD)之间的差异,并探索这些指标之间的关系。具有竞争力的高中和大学投手(n = 26)参加了单次评估,通过便携式应变仪设备对肩部旋转肌等长最大力量和RFD进行量化,并通过雷达对投掷速度进行量化。采用配对 t 检验、逐步线性回归模型和相关分析来回答相关问题。在投球速度方面,高中生和大学生投手之间没有发现明显差异(p > 0.05),所有投手都被集中到一个样本中进行后续分析。在 IR 和 ER 模型中,Fmax 与投掷速度的解释方差都很小(R2 = 0.12-0.13)。RFD和臂长对模型没有贡献。IR和ER的Fmax和RFD测量值之间以及IR和ER的Fmax和RFD测量值之间存在较大的相关性(r≥0.50;p < 0.001)。就投掷速度而言,在该组人群中,拥有强大的IR和ER最大投掷能力似乎比快速发力能力更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Intervertebral disc deformation in the lower lumbar spine during object lifting measured in vivo using indwelling bone pins. Energetic scaling behavior of patterned epithelium A clinical investigation of force plate drift error on predicted joint kinetics during gait. Strategies for unplanned gait termination at comfortable and fast walking speeds in children with cerebral palsy. Effects of foot orthoses application during walking on lower limb joint angles and moments in adults with flat Feet: A systematic review with Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1