Prediction of sperm motion behavior in microfluidic channel using sperm swimming model

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2024-09-20 DOI:10.1016/j.jbiomech.2024.112336
{"title":"Prediction of sperm motion behavior in microfluidic channel using sperm swimming model","authors":"","doi":"10.1016/j.jbiomech.2024.112336","DOIUrl":null,"url":null,"abstract":"<div><div>Several investigations have recently been conducted using microfluidic channels to sort highly motile sperm and thereby increase the probability of fertilization. To further enhance the efficiency of sperm sorting, predicting sperm movement in microfluidic channels through simulation techniques could be beneficial. In this study, we constructed a sperm swimming model based on the concept of an agent-based model. This model allows analysis at the same spatio–temporal scale similar to microfluidic channels. Sperm movement was simplistically modeled as a random walk, utilizing the distribution of sperm velocity and deflection angle obtained from experimental data. We have developed a thigmotaxis model to describe the phenomenon where sperm near the wall exhibit a reduced tendency to move away from it. Additionally, we created a rheotaxis model, in which sperm reorient in the direction opposite to the flow depending on the shear rate. Using these models, we investigated sperm behaviors within a microchannel featuring a tapered area. The results reveal that sperm accumulate within the tapered area, leading to a significant increase in sperm concentration for specific flow velocity ranges in the microchannel. This model provides valuable information for predicting the effects of sperm sorting in various microfluidic channels.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004147","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Several investigations have recently been conducted using microfluidic channels to sort highly motile sperm and thereby increase the probability of fertilization. To further enhance the efficiency of sperm sorting, predicting sperm movement in microfluidic channels through simulation techniques could be beneficial. In this study, we constructed a sperm swimming model based on the concept of an agent-based model. This model allows analysis at the same spatio–temporal scale similar to microfluidic channels. Sperm movement was simplistically modeled as a random walk, utilizing the distribution of sperm velocity and deflection angle obtained from experimental data. We have developed a thigmotaxis model to describe the phenomenon where sperm near the wall exhibit a reduced tendency to move away from it. Additionally, we created a rheotaxis model, in which sperm reorient in the direction opposite to the flow depending on the shear rate. Using these models, we investigated sperm behaviors within a microchannel featuring a tapered area. The results reveal that sperm accumulate within the tapered area, leading to a significant increase in sperm concentration for specific flow velocity ranges in the microchannel. This model provides valuable information for predicting the effects of sperm sorting in various microfluidic channels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用精子游动模型预测微流体通道中的精子运动行为
最近有几项研究利用微流体通道对高运动性精子进行分拣,从而提高受精几率。为了进一步提高精子分拣的效率,通过模拟技术预测精子在微流控通道中的运动可能是有益的。在这项研究中,我们根据基于代理的模型概念构建了一个精子游动模型。该模型可在与微流控通道类似的时空尺度上进行分析。利用从实验数据中获得的精子速度和偏转角度分布,精子运动被简化为随机行走。我们建立了一个thigmotaxis模型来描述精子在靠近壁面时表现出远离壁面的趋势减弱的现象。此外,我们还建立了一个流变模型,在该模型中,精子会根据剪切率向与水流相反的方向重新定向。利用这些模型,我们研究了精子在具有锥形区域的微通道内的行为。结果显示,精子在锥形区域内聚集,导致微通道中特定流速范围内的精子浓度显著增加。该模型为预测精子在各种微流控通道中的分拣效果提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Intervertebral disc deformation in the lower lumbar spine during object lifting measured in vivo using indwelling bone pins. Energetic scaling behavior of patterned epithelium A clinical investigation of force plate drift error on predicted joint kinetics during gait. Strategies for unplanned gait termination at comfortable and fast walking speeds in children with cerebral palsy. Effects of foot orthoses application during walking on lower limb joint angles and moments in adults with flat Feet: A systematic review with Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1