Suyeon Lee , Hyekyeong Jang , Ahram Jeong , Jung Jae Yoo , Byeongho Park , Youngseok Oh , Dong Gi Seong
{"title":"Novel strategy for fabricating three-dimensional CNT nanopreform–reinforced polyamide 6 composites via reactive infiltration","authors":"Suyeon Lee , Hyekyeong Jang , Ahram Jeong , Jung Jae Yoo , Byeongho Park , Youngseok Oh , Dong Gi Seong","doi":"10.1016/j.compscitech.2024.110872","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon nanotube (CNT) aerogels have gained significant attentions for diverse applications because they formed three-dimensional assemblies of CNTs with high electrical conductivity and large specific surface area, maintaining the intrinsic properties of CNTs. Polymer infiltration is commonly employed to improve the fragility and poor mechanical properties that limit their applications. Nonetheless, the unimpregnated area can easily be created due to the fine and complex impregnating path inside the aerogel. Here, we utilized reactive infiltration of polyamide 6 for fabricating aerogel-based nanocomposites via facile impregnation with ultralow-viscosity monomers, significantly improving the mechanical properties while maintaining the network structure of aerogel. The nanocomposite exhibited an excellent tensile strength of 61.3 MPa, representing a 55.6 % improvement over that of pure polymer. By fabricating the novel nanocomposite with a stable interconnected structure, we confirmed one of the highest levels of electrical conductivity among polymeric nanocomposites and also verified the potential applications as heat-dissipation materials.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110872"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotube (CNT) aerogels have gained significant attentions for diverse applications because they formed three-dimensional assemblies of CNTs with high electrical conductivity and large specific surface area, maintaining the intrinsic properties of CNTs. Polymer infiltration is commonly employed to improve the fragility and poor mechanical properties that limit their applications. Nonetheless, the unimpregnated area can easily be created due to the fine and complex impregnating path inside the aerogel. Here, we utilized reactive infiltration of polyamide 6 for fabricating aerogel-based nanocomposites via facile impregnation with ultralow-viscosity monomers, significantly improving the mechanical properties while maintaining the network structure of aerogel. The nanocomposite exhibited an excellent tensile strength of 61.3 MPa, representing a 55.6 % improvement over that of pure polymer. By fabricating the novel nanocomposite with a stable interconnected structure, we confirmed one of the highest levels of electrical conductivity among polymeric nanocomposites and also verified the potential applications as heat-dissipation materials.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.