The impact of relaxation on isothermal acoustic traveling waves: A new solvable model based on Navier–Stokes–Maxwell theory

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS Wave Motion Pub Date : 2024-09-18 DOI:10.1016/j.wavemoti.2024.103415
{"title":"The impact of relaxation on isothermal acoustic traveling waves: A new solvable model based on Navier–Stokes–Maxwell theory","authors":"","doi":"10.1016/j.wavemoti.2024.103415","DOIUrl":null,"url":null,"abstract":"<div><div>An analysis of isothermal acoustic traveling waves in a particular sub-class of Maxwell fluids, specifically, those which behave like perfect gases and wherein the shear viscosity is proportional to the square of the mass density, is presented. Exact solutions are derived and analyzed, shock thickness results are computed, and the thermodynamic consistency of the isothermal assumption is verified vis-à-vis the Mach number values considered. It is shown that, within the range where both yield dispersed shock profiles, the Maxwell case leads to significantly smaller shock thicknesses and more asymmetric solution profiles than those admitted by the corresponding Newtonian (fluid) case.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001458","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An analysis of isothermal acoustic traveling waves in a particular sub-class of Maxwell fluids, specifically, those which behave like perfect gases and wherein the shear viscosity is proportional to the square of the mass density, is presented. Exact solutions are derived and analyzed, shock thickness results are computed, and the thermodynamic consistency of the isothermal assumption is verified vis-à-vis the Mach number values considered. It is shown that, within the range where both yield dispersed shock profiles, the Maxwell case leads to significantly smaller shock thicknesses and more asymmetric solution profiles than those admitted by the corresponding Newtonian (fluid) case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弛豫对等温声学行波的影响:基于纳维-斯托克斯-麦克斯韦理论的新型可解模型
本文分析了麦克斯韦流体的一个特殊子类中的等温声学行波,特别是那些行为类似于完美气体的流体,其中剪切粘度与质量密度的平方成正比。推导并分析了精确解,计算了冲击厚度结果,并验证了等温假设在热力学上与所考虑的马赫数值的一致性。结果表明,在两者都产生分散冲击剖面的范围内,麦克斯韦情况导致的冲击厚度明显小于相应的牛顿(流体)情况导致的非对称解剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
期刊最新文献
On peridynamic acoustics Constitutive modelling and wave propagation through a class of anisotropic elastic metamaterials with local rotation Accurate computation of scattering poles of acoustic obstacles with impedance boundary conditions The dynamic behaviors between double-hump solitons in birefringent fibers Compactons in a class of doubly sublinear Gardner equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1