{"title":"Stability and convergence of in time approximations of hyperbolic elastodynamics via stepwise minimization","authors":"Antonín Češík , Sebastian Schwarzacher","doi":"10.1016/j.jde.2024.09.034","DOIUrl":null,"url":null,"abstract":"<div><div>We study step-wise time approximations of non-linear hyperbolic initial value problems. The technique used here is a generalization of the minimizing movements method, using two time-scales: one for velocity, the other (potentially much larger) for acceleration. The main applications are from elastodynamics, namely so-called generalized solids, undergoing large deformations. The evolution follows an underlying variational structure exploited by step-wise minimization. We show for a large family of (elastic) energies that the introduced scheme is stable; allowing for non-linearities of highest order. If the highest order can be assumed to be linear, we show that the limit solutions are regular and that the minimizing movements scheme converges with optimal linear rate. Thus this work extends numerical time-step minimization methods to the realm of hyperbolic problems.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study step-wise time approximations of non-linear hyperbolic initial value problems. The technique used here is a generalization of the minimizing movements method, using two time-scales: one for velocity, the other (potentially much larger) for acceleration. The main applications are from elastodynamics, namely so-called generalized solids, undergoing large deformations. The evolution follows an underlying variational structure exploited by step-wise minimization. We show for a large family of (elastic) energies that the introduced scheme is stable; allowing for non-linearities of highest order. If the highest order can be assumed to be linear, we show that the limit solutions are regular and that the minimizing movements scheme converges with optimal linear rate. Thus this work extends numerical time-step minimization methods to the realm of hyperbolic problems.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics