Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114114
Chun Liu , Suliang Si , Guanghui Hu , Bo Zhang
This paper is concerned with the inverse source problems for the acoustic wave equation in the full space , where the source term is compactly supported in both time and spatial variables. The main goal is to investigate increasing stability for the wave equation in terms of the interval length of given parameters (e.g., frequency bandwith of the temporal component of the source function). We establish increasing stability estimates of the -norm of the source function by using only the Dirichlet boundary data. Our method relies on the Huygens' principle, the Fourier transform and explicit bounds for the continuation of analytic functions.
{"title":"Increasing stability for inverse acoustic source problems in the time domain","authors":"Chun Liu , Suliang Si , Guanghui Hu , Bo Zhang","doi":"10.1016/j.jde.2026.114114","DOIUrl":"10.1016/j.jde.2026.114114","url":null,"abstract":"<div><div>This paper is concerned with the inverse source problems for the acoustic wave equation in the full space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where the source term is compactly supported in both time and spatial variables. The main goal is to investigate increasing stability for the wave equation in terms of the interval length of given parameters (e.g., frequency bandwith of the temporal component of the source function). We establish increasing stability estimates of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the source function by using only the Dirichlet boundary data. Our method relies on the Huygens' principle, the Fourier transform and explicit bounds for the continuation of analytic functions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114114"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114115
Hilário Alencar , G. Pacelli Bessa , Gregório Silva Neto
In this paper, we establish nonexistence results for complete translating solitons of the r-mean curvature flow under suitable growth conditions on the -mean curvature and on the norm of the second fundamental form. We first show that such solitons cannot be entirely contained in the complement of a right rotational cone whose axis of symmetry is aligned with the translation direction. We then relax the growth condition on the -mean curvature and prove that properly immersed translating solitons cannot be confined to certain half-spaces opposite to the translation direction. We conclude the paper by showing that complete, properly immersed translating solitons satisfying appropriate growth conditions on the -mean curvature cannot lie completely within the intersection of two transversal vertical half-spaces.
{"title":"Half-space theorems for translating solitons of the r-mean curvature flow","authors":"Hilário Alencar , G. Pacelli Bessa , Gregório Silva Neto","doi":"10.1016/j.jde.2026.114115","DOIUrl":"10.1016/j.jde.2026.114115","url":null,"abstract":"<div><div>In this paper, we establish nonexistence results for complete translating solitons of the <em>r</em>-mean curvature flow under suitable growth conditions on the <span><math><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-mean curvature and on the norm of the second fundamental form. We first show that such solitons cannot be entirely contained in the complement of a right rotational cone whose axis of symmetry is aligned with the translation direction. We then relax the growth condition on the <span><math><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-mean curvature and prove that properly immersed translating solitons cannot be confined to certain half-spaces opposite to the translation direction. We conclude the paper by showing that complete, properly immersed translating solitons satisfying appropriate growth conditions on the <span><math><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-mean curvature cannot lie completely within the intersection of two transversal vertical half-spaces.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"460 ","pages":"Article 114115"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114103
Tomás Caraballo , Alexandre N. Carvalho , Arthur C. Cunha , Heraclio López-Lázaro
In this paper, we introduce the concept of uniformly differentiable evolution processes for dynamical systems on families of time-dependent phase spaces. This framework is motivated by two main aspects: it provides an appropriate framework for studying the dynamics of solutions to non-cylindrical PDE problems, and it naturally extends the theory of uniformly differentiable evolution processes on fixed phase spaces. We establish sufficient conditions on the differential of the evolution process, decomposed as the sum of a contraction and an operator with compactness properties, ensuring that the associated pullback attractors have finite fractal dimension. Our approach is inspired by the smoothing property, Mañé's method, and techniques for controlling backward bounded trajectories. As an application, we analyze non-cylindrical problems with different geometries, studying the dynamics of solutions for the one-dimensional semilinear heat equation and for the two-dimensional Navier-Stokes equations.
{"title":"Smoothing property assumptions for uniformly differential processes acting on time-dependent normed spaces","authors":"Tomás Caraballo , Alexandre N. Carvalho , Arthur C. Cunha , Heraclio López-Lázaro","doi":"10.1016/j.jde.2026.114103","DOIUrl":"10.1016/j.jde.2026.114103","url":null,"abstract":"<div><div>In this paper, we introduce the concept of uniformly differentiable evolution processes for dynamical systems on families of time-dependent phase spaces. This framework is motivated by two main aspects: it provides an appropriate framework for studying the dynamics of solutions to non-cylindrical PDE problems, and it naturally extends the theory of uniformly differentiable evolution processes on fixed phase spaces. We establish sufficient conditions on the differential of the evolution process, decomposed as the sum of a contraction and an operator with compactness properties, ensuring that the associated pullback attractors have finite fractal dimension. Our approach is inspired by the smoothing property, Mañé's method, and techniques for controlling backward bounded trajectories. As an application, we analyze non-cylindrical problems with different geometries, studying the dynamics of solutions for the one-dimensional semilinear heat equation and for the two-dimensional Navier-Stokes equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"460 ","pages":"Article 114103"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114111
Fucai Li , Houzhi Tang , Shuxing Zhang
The classical Fourier's law, which states that the heat flux is proportional to the temperature gradient, induces the paradox of infinite propagation speed for heat conduction. To accurately simulate the real physical process, the hyperbolic model of heat conduction named Cattaneo's law was proposed, which leads to the finite speed of heat propagation. A natural question is whether the large-time behavior of the heat flux for compressible flow would be different for these two laws. In this paper, we aim to address this question by studying the global well-posedness and the optimal time-decay rates of classical solutions to the compressible Navier-Stokes system with Cattaneo's law. By designing a new method, we obtain the optimal time-decay rates for the highest order derivatives of the heat flux, which cannot be derived for the system with Fourier's law by Matsumura and Nishida (1979) [25]. In this sense, our results first reveal the essential differences between the two laws.
{"title":"Global well-posedness and large-time behavior of the compressible Navier-Stokes equations with hyperbolic heat conduction","authors":"Fucai Li , Houzhi Tang , Shuxing Zhang","doi":"10.1016/j.jde.2026.114111","DOIUrl":"10.1016/j.jde.2026.114111","url":null,"abstract":"<div><div>The classical Fourier's law, which states that the heat flux is proportional to the temperature gradient, induces the paradox of infinite propagation speed for heat conduction. To accurately simulate the real physical process, the hyperbolic model of heat conduction named Cattaneo's law was proposed, which leads to the finite speed of heat propagation. A natural question is whether the large-time behavior of the heat flux for compressible flow would be different for these two laws. In this paper, we aim to address this question by studying the global well-posedness and the optimal time-decay rates of classical solutions to the compressible Navier-Stokes system with Cattaneo's law. By designing a new method, we obtain the optimal time-decay rates for the highest order derivatives of the heat flux, which cannot be derived for the system with Fourier's law by Matsumura and Nishida (1979) <span><span>[25]</span></span>. In this sense, our results first reveal the essential differences between the two laws.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"460 ","pages":"Article 114111"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114107
Wanxiao Xu , Hongying Shu , Lin Wang , Xiang-Sheng Wang , Jianshe Yu
Incorporating spatial diffusion and digestion delay into an intraguild predation (IGP) model, this work demonstrates rich spatiotemporal dynamics governing biological invasions. We derive criteria for the successful invasion of the intraguild predator and identify a critical diffusion threshold that eliminates spatially heterogeneous steady states. The digestion delay induces stability switches, resulting in a finite number of stability intervals, and causing abrupt shifts in coexistence patterns as the delay crosses critical thresholds. Through steady state bifurcation analysis, we rigorously establish the emergence of spatially heterogeneous coexistence states. We further derive Turing instability conditions for Hopf-bifurcating periodic solutions in a general three-dimensional delayed diffusive system. Our results reveal multiple coexistence mechanisms, including homogeneous steady states, periodic oscillations, and complex spatiotemporal patterns, highlighting the intricate interplay between time delay and spatial heterogeneity in biological invasions.
{"title":"Complex spatiotemporal dynamics in a diffusive intraguild predation model with digestion delay","authors":"Wanxiao Xu , Hongying Shu , Lin Wang , Xiang-Sheng Wang , Jianshe Yu","doi":"10.1016/j.jde.2026.114107","DOIUrl":"10.1016/j.jde.2026.114107","url":null,"abstract":"<div><div>Incorporating spatial diffusion and digestion delay into an intraguild predation (IGP) model, this work demonstrates rich spatiotemporal dynamics governing biological invasions. We derive criteria for the successful invasion of the intraguild predator and identify a critical diffusion threshold that eliminates spatially heterogeneous steady states. The digestion delay induces stability switches, resulting in a finite number of stability intervals, and causing abrupt shifts in coexistence patterns as the delay crosses critical thresholds. Through steady state bifurcation analysis, we rigorously establish the emergence of spatially heterogeneous coexistence states. We further derive Turing instability conditions for Hopf-bifurcating periodic solutions in a general three-dimensional delayed diffusive system. Our results reveal multiple coexistence mechanisms, including homogeneous steady states, periodic oscillations, and complex spatiotemporal patterns, highlighting the intricate interplay between time delay and spatial heterogeneity in biological invasions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114107"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114112
Andrew Yang , Xu Zhao , Wenshu Zhou
We study free boundary problem of the one dimensional compressible isentropic Navier–Stokes equations with density–dependent viscosity when the initial density connects to the vacuum states continuously and is either of compact or infinite support. Precisely, the pressure and the viscosity coefficient are assumed to be proportional to and respectively, where ρ is the density, and γ and θ are positive constants. We prove the global existence of smooth solutions with large initial data when and . Since the power θ of the previous results on this topic does not exceed 2, the result of this paper fills at least the gap for large θ. The result includes also the case of the infinite support of the initial density, which just corresponds to the one when . Notice that two key estimates of the proof are the uniform lower bound of the density and the uniform bound of the velocity with respect to the construction of the approximate solutions. In contrast to the traditional techniques relying on weighted energy estimates, they are proved independently by the comparison principle and the maximal principle, respectively. Moreover, we obtain some results on regularity up to boundary and uniqueness of solutions. The results of this paper cover some important models, for instance, the viscous Saint–Venant model for the motion of shallow water, i.e., and .
{"title":"Global smooth solutions of compressible Navier–Stokes equations with degenerate viscosity and vacuum","authors":"Andrew Yang , Xu Zhao , Wenshu Zhou","doi":"10.1016/j.jde.2026.114112","DOIUrl":"10.1016/j.jde.2026.114112","url":null,"abstract":"<div><div>We study free boundary problem of the one dimensional compressible isentropic Navier–Stokes equations with density–dependent viscosity when the initial density connects to the vacuum states continuously and is either of compact or infinite support. Precisely, the pressure and the viscosity coefficient are assumed to be proportional to <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>γ</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>θ</mi></mrow></msup></math></span> respectively, where <em>ρ</em> is the density, and <em>γ</em> and <em>θ</em> are positive constants. We prove the global existence of smooth solutions with large initial data when <span><math><mi>θ</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>γ</mi><mo>≥</mo><mn>1</mn><mo>+</mo><mi>θ</mi></math></span>. Since the power <em>θ</em> of the previous results on this topic does not exceed 2, the result of this paper fills at least the gap for large <em>θ</em>. The result includes also the case of the infinite support of the initial density, which just corresponds to the one when <span><math><mn>0</mn><mo><</mo><mi>θ</mi><mo>≤</mo><mn>1</mn></math></span>. Notice that two key estimates of the proof are the uniform lower bound of the density and the uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> bound of the velocity with respect to the construction of the approximate solutions. In contrast to the traditional techniques relying on weighted energy estimates, they are proved independently by the comparison principle and the maximal principle, respectively. Moreover, we obtain some results on regularity up to boundary and uniqueness of solutions. The results of this paper cover some important models, for instance, the viscous Saint–Venant model for the motion of shallow water, i.e., <span><math><mi>θ</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>γ</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114112"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114110
Ya-Guang Wang , Yi-Lei Zhao
We study the well-posedness of the compressible boundary layer equations with data being analytic in the tangential variable of the boundary. The compressible boundary layer equations, a nonlinear coupled system of degenerate parabolic equations and an elliptic equation, describe the behavior of thermal layer and viscous layer in the small viscosity and heat conductivity limit, for the two-dimensional compressible viscous flow with heat conduction with nonslip and zero heat flux boundary conditions. We use the Littlewood-Paley theory to establish the a priori estimates for solutions of this compressible boundary layer problem, and obtain the local existence and uniqueness of the solution in the space of analytic in the tangential variable and Sobolev in the normal variable.
{"title":"Well-posedness of the compressible boundary layer equations with analytic initial data","authors":"Ya-Guang Wang , Yi-Lei Zhao","doi":"10.1016/j.jde.2026.114110","DOIUrl":"10.1016/j.jde.2026.114110","url":null,"abstract":"<div><div>We study the well-posedness of the compressible boundary layer equations with data being analytic in the tangential variable of the boundary. The compressible boundary layer equations, a nonlinear coupled system of degenerate parabolic equations and an elliptic equation, describe the behavior of thermal layer and viscous layer in the small viscosity and heat conductivity limit, for the two-dimensional compressible viscous flow with heat conduction with nonslip and zero heat flux boundary conditions. We use the Littlewood-Paley theory to establish the a priori estimates for solutions of this compressible boundary layer problem, and obtain the local existence and uniqueness of the solution in the space of analytic in the tangential variable and Sobolev in the normal variable.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114110"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.jde.2026.114113
Ryuji Kajikiya
We study the Hénon equation in unbounded domains Ω which are G invariant, where G is a closed subgroup of the orthogonal group. We say that Ω (or ) is G invariant if (or ) for any . We call a least energy solution if it is a minimizer of the Rayleigh quotient associated with the Hénon equation. We offer sufficient conditions which guarantee that no least energy solution is G invariant.
{"title":"Group noninvariant solutions of the Hénon equation in unbounded domains","authors":"Ryuji Kajikiya","doi":"10.1016/j.jde.2026.114113","DOIUrl":"10.1016/j.jde.2026.114113","url":null,"abstract":"<div><div>We study the Hénon equation in unbounded domains Ω which are <em>G</em> invariant, where <em>G</em> is a closed subgroup of the orthogonal group. We say that Ω (or <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>) is <em>G</em> invariant if <span><math><mi>g</mi><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>=</mo><mi>Ω</mi></math></span> (or <span><math><mi>u</mi><mo>(</mo><mi>g</mi><mi>x</mi><mo>)</mo><mo>=</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>) for any <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>. We call <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> a least energy solution if it is a minimizer of the Rayleigh quotient associated with the Hénon equation. We offer sufficient conditions which guarantee that no least energy solution is <em>G</em> invariant.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114113"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-15DOI: 10.1016/j.jde.2026.114109
Paulo L. Dattori da Silva, André Pedroso Kowacs
We extend the directional Poincaré inequality on the torus, introduced by Steinerberger in (2016) [1], to the setting of compact Lie groups. We provide necessary and sufficient conditions for the existence of such an inequality based on estimates on the eigenvalues of the global symbol of the corresponding vector field. We also prove that such refinement of the Poincaré inequality holds for a left-invariant vector field on a compact Lie group G if and only if the vector field is globally solvable, and extend this equivalence to tube-type vector fields on .
{"title":"Directional Poincaré inequality on compact Lie groups","authors":"Paulo L. Dattori da Silva, André Pedroso Kowacs","doi":"10.1016/j.jde.2026.114109","DOIUrl":"10.1016/j.jde.2026.114109","url":null,"abstract":"<div><div>We extend the directional Poincaré inequality on the torus, introduced by Steinerberger in (2016) <span><span>[1]</span></span>, to the setting of compact Lie groups. We provide necessary and sufficient conditions for the existence of such an inequality based on estimates on the eigenvalues of the global symbol of the corresponding vector field. We also prove that such refinement of the Poincaré inequality holds for a left-invariant vector field on a compact Lie group <em>G</em> if and only if the vector field is globally solvable, and extend this equivalence to tube-type vector fields on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><mi>G</mi></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114109"},"PeriodicalIF":2.3,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1016/j.jde.2025.114081
Ziyue Zeng, Yuxiang Li
<div><div>This paper investigates the quasilinear two-species chemotaxis system with two chemicals<span><span><span>(⋆)</span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mo>⨏</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mrow><mo>(</mo><mi>g</mi><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mo>⨏</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>w</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>z</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>w</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mo>(</mo><mi>n</mi><mo>⩾</mo><mn>3</mn><mo>)</mo></math></span> is a smoothly bounded domain. The sensitivity functi
{"title":"Critical blow-up curve in a quasilinear two-species chemotaxis system with two chemicals","authors":"Ziyue Zeng, Yuxiang Li","doi":"10.1016/j.jde.2025.114081","DOIUrl":"10.1016/j.jde.2025.114081","url":null,"abstract":"<div><div>This paper investigates the quasilinear two-species chemotaxis system with two chemicals<span><span><span>(⋆)</span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mo>⨏</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mrow><mo>(</mo><mi>g</mi><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mo>⨏</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>w</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>z</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>w</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mo>(</mo><mi>n</mi><mo>⩾</mo><mn>3</mn><mo>)</mo></math></span> is a smoothly bounded domain. The sensitivity functi","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"460 ","pages":"Article 114081"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}