Md. Miraj Arefin, Dipayan Mondal , Md. Ashraful Islam
{"title":"Optimizing cascade refrigeration systems with low GWP refrigerants for Low-Temperature Applications: A thermodynamic analysis","authors":"Md. Miraj Arefin, Dipayan Mondal , Md. Ashraful Islam","doi":"10.1016/j.ecmx.2024.100722","DOIUrl":null,"url":null,"abstract":"<div><div>This study offers a comprehensive thermodynamic analysis of a cascade refrigeration system conducted for low-temperature applications, focusing on the use of low-GWP and zero-ODP refrigerants to improve efficiency and sustainability. The target of this study is to explore the performance of the system using a combination of refrigerants: low-temperature cycle refrigerants such as R744, while high-temperature cycle refrigerants such as R717, R1234yf, R1234ze(E), R1336mzz(E), and R1336mzz(Z), respectively. The ECS model incorporating in REFPROP 10.0a tool was utilized to extract the data through coding for analysis. The assessment of this system involves the examination of various parameters such as its coefficient of performance, total compressor workload, total exergy, and exergy efficiency across various operational conditions. The results are compared with and without superheated and subcooled conditions to understand the impact of these parameters on the system performance. The system with R744 in the low-temperature cycle and R717, R1234yf, R1234ze(E), R1336mzz(E), and R1336mzz(Z) in the high-temperature cycle provides a higher COP and lower total compressor work compared to the conventional cascade refrigeration system. In optimal CRS, the R744-R717 pair attains the highest COP of 2.05 at the lowest possible compressor work from 9.53 to 4.87 kW than other refrigerants pair while evaporator temperature shifting from −55 °C to −20 °C. The exergy efficiency of R744/R717 is found at 26.47 % at an evaporator temperature of −55 °C, but it extends to a peak of 51.73 % at −20 °C. The study also shows that the superheating and sub-cooling of the refrigerants have a significant impact on the performance of the cascade refrigeration system. Superheating and sub-cooling at 10 °C, improves the COP of the system by reducing the compressor work and increasing the heat transfer efficiency. The research offers valuable insights into the system’s thermodynamic performance when employing low GWP refrigerants in low-temperature applications. These findings have the potential to guide the design and optimization of cascade refrigeration systems over the range of low-temperature applications.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100722"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524002009/pdfft?md5=97576abb2724465bc6398e8ca1a6721c&pid=1-s2.0-S2590174524002009-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study offers a comprehensive thermodynamic analysis of a cascade refrigeration system conducted for low-temperature applications, focusing on the use of low-GWP and zero-ODP refrigerants to improve efficiency and sustainability. The target of this study is to explore the performance of the system using a combination of refrigerants: low-temperature cycle refrigerants such as R744, while high-temperature cycle refrigerants such as R717, R1234yf, R1234ze(E), R1336mzz(E), and R1336mzz(Z), respectively. The ECS model incorporating in REFPROP 10.0a tool was utilized to extract the data through coding for analysis. The assessment of this system involves the examination of various parameters such as its coefficient of performance, total compressor workload, total exergy, and exergy efficiency across various operational conditions. The results are compared with and without superheated and subcooled conditions to understand the impact of these parameters on the system performance. The system with R744 in the low-temperature cycle and R717, R1234yf, R1234ze(E), R1336mzz(E), and R1336mzz(Z) in the high-temperature cycle provides a higher COP and lower total compressor work compared to the conventional cascade refrigeration system. In optimal CRS, the R744-R717 pair attains the highest COP of 2.05 at the lowest possible compressor work from 9.53 to 4.87 kW than other refrigerants pair while evaporator temperature shifting from −55 °C to −20 °C. The exergy efficiency of R744/R717 is found at 26.47 % at an evaporator temperature of −55 °C, but it extends to a peak of 51.73 % at −20 °C. The study also shows that the superheating and sub-cooling of the refrigerants have a significant impact on the performance of the cascade refrigeration system. Superheating and sub-cooling at 10 °C, improves the COP of the system by reducing the compressor work and increasing the heat transfer efficiency. The research offers valuable insights into the system’s thermodynamic performance when employing low GWP refrigerants in low-temperature applications. These findings have the potential to guide the design and optimization of cascade refrigeration systems over the range of low-temperature applications.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.