Connectivity analysis and user access design of ground-to-air ultraviolet communication networks

IF 4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Optical Communications and Networking Pub Date : 2024-09-24 DOI:10.1364/JOCN.527611
Lei Sun;Chen Gong;Zhengyuan Xu
{"title":"Connectivity analysis and user access design of ground-to-air ultraviolet communication networks","authors":"Lei Sun;Chen Gong;Zhengyuan Xu","doi":"10.1364/JOCN.527611","DOIUrl":null,"url":null,"abstract":"Considering the scattering feature in the ultraviolet (UV) spectrum that can support communication for mobile unmanned aerial vehicles (UAVs), we deploy UAVs equipped with UV communication. Specifically, we focus on ground-to-air UV networks where the UAV collects data from the ground nodes. Assuming that the ground nodes are distributed in two dimensions, we analyze the air-ground connectivity probability. The influence of the transmitter divergence angle on the connectivity probability is investigated. Then, we analyze the probability that there exists interference from multiple nodes. To guarantee reliable communication under such interference, we further propose a handshaking-based UAV access protocol. By solving the coloring problem, we determine the time slot allocation for handshaking and propose a greedy channel allocation method to maximize the average system throughput. Numerical results show the performance gain of the proposed protocol over existing works.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10691669/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the scattering feature in the ultraviolet (UV) spectrum that can support communication for mobile unmanned aerial vehicles (UAVs), we deploy UAVs equipped with UV communication. Specifically, we focus on ground-to-air UV networks where the UAV collects data from the ground nodes. Assuming that the ground nodes are distributed in two dimensions, we analyze the air-ground connectivity probability. The influence of the transmitter divergence angle on the connectivity probability is investigated. Then, we analyze the probability that there exists interference from multiple nodes. To guarantee reliable communication under such interference, we further propose a handshaking-based UAV access protocol. By solving the coloring problem, we determine the time slot allocation for handshaking and propose a greedy channel allocation method to maximize the average system throughput. Numerical results show the performance gain of the proposed protocol over existing works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地对空紫外线通信网络的连接分析和用户接入设计
考虑到紫外线(UV)光谱的散射特性可支持移动无人飞行器(UAV)的通信,我们部署了配备紫外线通信功能的无人飞行器。具体来说,我们关注的是无人机从地面节点收集数据的地对空紫外线网络。假设地面节点分布在两个维度上,我们分析了空地连接概率。研究了发射器发散角对连通概率的影响。然后,我们分析了存在多个节点干扰的概率。为了保证在这种干扰下的可靠通信,我们进一步提出了一种基于握手的无人机接入协议。通过解决着色问题,我们确定了握手的时隙分配,并提出了一种贪婪信道分配方法,以最大化平均系统吞吐量。数值结果表明,与现有研究相比,所提出的协议在性能上有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
16.00%
发文量
104
审稿时长
4 months
期刊介绍: The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.
期刊最新文献
Low-complexity end-to-end deep learning framework for 100G-PON Optical networking that exploits massive wavelength/spectrum and spatial parallelisms Zero-cost upgrade to a multi-fiber network with partial lane-change capabilities Benchmarking framework for resource allocation algorithms in multicore fiber elastic optical networks SkipNet: an adaptive neural network equalization algorithm for future passive optical networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1