{"title":"Revolutionizing Colon Histopathology Glandular Segmentation Using an Ensemble Network With Watershed Algorithm","authors":"Bijoyeta Roy, Mousumi Gupta, Bidyut Krishna Goswami","doi":"10.1002/ima.23179","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U-Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick-QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23179","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal adenocarcinoma, the most prevalent form of colon cancer, originates in the glandular structures of the intestines, presenting histopathological abnormalities in affected tissues. Accurate gland segmentation is crucial for identifying these potentially fatal abnormalities. While recent methodologies have shown success in segmenting glands in benign tissues, their efficacy diminishes when applied to malignant tissue segmentation. This study aims to develop a robust learning algorithm using a convolutional neural network (CNN) to segment glandular structures in colon histology images. The methodology employs a CNN based on the U-Net architecture, augmented by a weighted ensemble network that integrates DenseNet 169, Inception V3, and Efficientnet B3 as backbone models. Additionally, the segmented gland boundaries are refined using the watershed algorithm. Evaluation on the Warwick-QU dataset demonstrates promising results for the ensemble model, by achieving an F1 score of 0.928 and 0.913, object dice coefficient of 0.923 and 0.911, and Hausdorff distances of 38.97 and 33.76 on test sets A and B, respectively. These results are compared with outcomes from the GlaS challenge (MICCAI 2015) and existing research findings. Furthermore, our model is validated with a publicly available dataset named LC25000, and visual inspection reveals promising results, further validating the efficacy of our approach. The proposed ensemble methodology underscores the advantages of amalgamating diverse models, highlighting the potential of ensemble techniques to enhance segmentation tasks beyond individual model capabilities.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.