Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-09-25 DOI:10.1038/s42256-024-00897-5
Nick McGreivy, Ammar Hakim
{"title":"Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations","authors":"Nick McGreivy, Ammar Hakim","doi":"10.1038/s42256-024-00897-5","DOIUrl":null,"url":null,"abstract":"One of the most promising applications of machine learning in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of machine-learning-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE-solving literature. Out of all of the articles that report using ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) make a comparison with a weak baseline. Second, we find evidence that reporting biases are widespread, especially outcome reporting and publication biases. We conclude that ML-for-PDE-solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to under-reporting of negative results. To a large extent, these issues seem to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms to reduce perverse incentives for doing so. A systematic review of machine learning approaches to solve partial differential equations related to fluid dynamics highlights concerns about reproducibility and indicates that studies in this area have reached overly optimistic conclusions.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 10","pages":"1256-1269"},"PeriodicalIF":18.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00897-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most promising applications of machine learning in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of machine-learning-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE-solving literature. Out of all of the articles that report using ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) make a comparison with a weak baseline. Second, we find evidence that reporting biases are widespread, especially outcome reporting and publication biases. We conclude that ML-for-PDE-solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to under-reporting of negative results. To a large extent, these issues seem to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms to reduce perverse incentives for doing so. A systematic review of machine learning approaches to solve partial differential equations related to fluid dynamics highlights concerns about reproducibility and indicates that studies in this area have reached overly optimistic conclusions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基线薄弱和报告偏差导致对流体相关偏微分方程的机器学习过于乐观
机器学习在计算物理领域最有前途的应用之一是加速偏微分方程(PDE)的求解。基于机器学习的偏微分方程求解器的主要目标是比作为比较基准的标准数值方法更快地输出足够精确的解。我们首先对 ML-for-PDE 求解文献进行了系统回顾。在所有报道使用 ML 解决流体相关 PDE 并声称优于标准数值方法的文章中,我们发现 79% 的文章(60/76)与弱基线进行了比较。其次,我们发现有证据表明报告偏差是普遍存在的,尤其是结果报告和发表偏差。我们的结论是,ML-PDE 仿真研究过于乐观:弱基线导致结果过于乐观,而报告偏差导致负面结果报告不足。在很大程度上,这些问题似乎是由与过去的可重复性危机类似的因素造成的:研究人员的自由度和对积极结果的偏爱。我们呼吁进行自下而上的文化变革,以尽量减少有偏见的报告,同时进行自上而下的结构改革,以减少这样做的不正当激励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Machine learning for practical quantum error mitigation AI pioneers win 2024 Nobel prizes Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning A soft skin with self-decoupled three-axis force-sensing taxels Efficient rare event sampling with unsupervised normalizing flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1