{"title":"Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations","authors":"Nick McGreivy, Ammar Hakim","doi":"10.1038/s42256-024-00897-5","DOIUrl":null,"url":null,"abstract":"One of the most promising applications of machine learning in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of machine-learning-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE-solving literature. Out of all of the articles that report using ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) make a comparison with a weak baseline. Second, we find evidence that reporting biases are widespread, especially outcome reporting and publication biases. We conclude that ML-for-PDE-solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to under-reporting of negative results. To a large extent, these issues seem to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms to reduce perverse incentives for doing so. A systematic review of machine learning approaches to solve partial differential equations related to fluid dynamics highlights concerns about reproducibility and indicates that studies in this area have reached overly optimistic conclusions.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 10","pages":"1256-1269"},"PeriodicalIF":18.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00897-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most promising applications of machine learning in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of machine-learning-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE-solving literature. Out of all of the articles that report using ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) make a comparison with a weak baseline. Second, we find evidence that reporting biases are widespread, especially outcome reporting and publication biases. We conclude that ML-for-PDE-solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to under-reporting of negative results. To a large extent, these issues seem to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms to reduce perverse incentives for doing so. A systematic review of machine learning approaches to solve partial differential equations related to fluid dynamics highlights concerns about reproducibility and indicates that studies in this area have reached overly optimistic conclusions.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.