Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields

Chuqiao Song, Jinjia Liu, Ruihang Wang, Xin Tang, Kun Wang, Zirui Gao, Mi Peng, Haibo Li, Siyu Yao, Feng Yang, Hanfeng Lu, Zuwei Liao, Xiao-Dong Wen, Ding Ma, Xiaonian Li, Lili Lin
{"title":"Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields","authors":"Chuqiao Song, Jinjia Liu, Ruihang Wang, Xin Tang, Kun Wang, Zirui Gao, Mi Peng, Haibo Li, Siyu Yao, Feng Yang, Hanfeng Lu, Zuwei Liao, Xiao-Dong Wen, Ding Ma, Xiaonian Li, Lili Lin","doi":"10.1038/s44286-024-00122-5","DOIUrl":null,"url":null,"abstract":"<p>Low-temperature methanation allows the near-equilibrium conversion of CO<sub>2</sub> to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO<sub>2</sub> at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrO<sub><i>x</i></sub>/Ni catalyst realizes ~90% CO<sub>2</sub> conversion and &gt;99% CH<sub>4</sub> selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H<sub>2</sub> and CO<sub>2</sub> coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO<sub>2</sub> methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs.</p><figure></figure>","PeriodicalId":520229,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44286-024-00122-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计 MOx/Ni 反相催化剂,实现低温二氧化碳活化和高甲烷产率
低温甲烷化可以在常压下将二氧化碳近乎平衡地转化为甲烷,有望带来显著的能源效率和经济效益。然而,由于氢化中间产物的动力学限制,在低温下高效催化活化 CO2 仍具有挑战性。我们在此报告,与具有相同组成的传统镍/氧化物相比,由负载在金属镍载体上的氧化物纳米岛组成的镍基反相催化剂具有显著的活性优势。优化后的 CeZrOx/Ni 催化剂在 200 °C 和常压条件下可实现 ~90% 的 CO2 转化率和 >99% 的 CH4 选择性,同时还具有优异的长期稳定性和过热/启停循环操作稳定性。机理研究表明,反界面可有效调节 H2 和 CO2 的覆盖率,并改变吸附的含氧化合物的构型,从而有利于表面中间产物的氢化。能源和经济分析表明,采用反相催化剂的低温二氧化碳甲烷化工艺有可能降低资本投资和甲烷生产成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1