Grain boundary defect passivation and iodine migration inhibition for efficient and stable perovskite solar cells

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-09-22 DOI:10.1016/j.electacta.2024.145129
{"title":"Grain boundary defect passivation and iodine migration inhibition for efficient and stable perovskite solar cells","authors":"","doi":"10.1016/j.electacta.2024.145129","DOIUrl":null,"url":null,"abstract":"<div><div>To inhibit the <em>I</em><sup>−</sup>migration and passivate the uncoordinated Pb<sup>2+</sup> on perovskite grain boundary (GB), 3-methyl-(1,1′-biphenyl)-4,4′-diformaldehyde (BPDA-Me) and 3-chlorine-(1,1′-biphenyl)-4,4′-diformaldehyde (BPDA-Cl) were synthesized and incorporated into perovskite films, respectively. The C = O groups in both additives can strongly interact with the uncoordinated Pb<sup>2+</sup>, allowing them to be anchored in perovskite GB. At the same time, the benzene ring skeleton in these two molecular structures can interact with the migrating <em>I</em><sup>−</sup> in GB. The Cl atom in the BPDA-Cl molecule delocalize electrons into the C = O group due to the conjugation effect of the benzene ring, so that the C = O group can provide stronger electronegativity, thus enhancing the interaction with the uncoordinated Pb<sup>2+</sup>. Meanwhile, Cl atom can coordinate with Pb<sup>2+</sup> to synergically passivate the I vacancy defect on GB and enhance the lattice strength of PbI<sub>6</sub>. This cooperative passivation further effectively inhibited the <em>I</em><sup>−</sup>migration occurring at the perovskite GB. The functional group electron density regulation and cooperative passivation of Cl and C = O in BPDA-Cl make the passivation effect better than BPDA-Me. Consequently, the BPDA-Cl based perovskite solar cell achieved the highest power conversion efficiency of 24.96 % and stability with 92.1 % of the initial performance retained after 500 h of operation under continuous lighting and maximum power point tracking conditions.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624013665","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

To inhibit the Imigration and passivate the uncoordinated Pb2+ on perovskite grain boundary (GB), 3-methyl-(1,1′-biphenyl)-4,4′-diformaldehyde (BPDA-Me) and 3-chlorine-(1,1′-biphenyl)-4,4′-diformaldehyde (BPDA-Cl) were synthesized and incorporated into perovskite films, respectively. The C = O groups in both additives can strongly interact with the uncoordinated Pb2+, allowing them to be anchored in perovskite GB. At the same time, the benzene ring skeleton in these two molecular structures can interact with the migrating I in GB. The Cl atom in the BPDA-Cl molecule delocalize electrons into the C = O group due to the conjugation effect of the benzene ring, so that the C = O group can provide stronger electronegativity, thus enhancing the interaction with the uncoordinated Pb2+. Meanwhile, Cl atom can coordinate with Pb2+ to synergically passivate the I vacancy defect on GB and enhance the lattice strength of PbI6. This cooperative passivation further effectively inhibited the Imigration occurring at the perovskite GB. The functional group electron density regulation and cooperative passivation of Cl and C = O in BPDA-Cl make the passivation effect better than BPDA-Me. Consequently, the BPDA-Cl based perovskite solar cell achieved the highest power conversion efficiency of 24.96 % and stability with 92.1 % of the initial performance retained after 500 h of operation under continuous lighting and maximum power point tracking conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶界缺陷钝化和碘迁移抑制,实现高效稳定的过氧化物太阳能电池
为了抑制I迁移并钝化包晶晶界(GB)上未配位的Pb2+,合成了3-甲基-(1,1′-联苯)-4,4′-二甲醛(BPDA-Me)和3-氯-(1,1′-联苯)-4,4′-二甲醛(BPDA-Cl),并分别将其加入到包晶薄膜中。这两种添加剂中的 C = O 基团都能与未配位的 Pb2+ 发生强烈的相互作用,使它们能够锚定在包晶 GB 中。同时,这两种分子结构中的苯环骨架还能与 GB 中迁移的 I- 相互作用。由于苯环的共轭效应,BPDA-Cl 分子中的 Cl 原子会将电子析出到 C = O 基团中,这样 C = O 基团就能提供更强的电负性,从而增强与未配位 Pb2+ 的相互作用。同时,Cl 原子能与 Pb2+ 配位,协同钝化 GB 上的 I 空位缺陷,增强 PbI6 的晶格强度。这种协同钝化作用进一步有效地抑制了包晶 GB 上发生的 I 迁移。BPDA-Cl 中的官能团电子密度调节和 Cl 与 C = O 的协同钝化使其钝化效果优于 BPDA-Me。因此,在连续照明和最大功率点跟踪条件下,基于 BPDA-Cl 的过氧化物太阳能电池实现了最高的功率转换效率(24.96%)和稳定性,在运行 500 小时后,其初始性能仍能保持 92.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Indium Oxide Decorated Graphitic Carbon Nitride/Multiwalled Carbon Nanotubes Ternary Composite for Supercapacitor Applications Simulating cyclic voltammetry at rough electrodes by the digital-simulation–deconvolution–convolution algorithm V/Cu/Co-mediated oxide/carbonate heterostructural nanoflowers for high-efficient electrocatalytic overall water splitting in alkaline media Impact of Amorphous Structure on CO2 Electrocatalysis with Cu: A Combined Machine Learning Forcefield and DFT Modelling Approach Tailored Functional Monolayers Made from Mesoionic Carbenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1