A clustered federated learning framework for collaborative fault diagnosis of wind turbines

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-09-25 DOI:10.1016/j.apenergy.2024.124532
{"title":"A clustered federated learning framework for collaborative fault diagnosis of wind turbines","authors":"","doi":"10.1016/j.apenergy.2024.124532","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind turbines. To enhance diagnostic performance and reduce communication costs in federated learning with data heterogeneity among different clients, we introduce a clustered federated learning framework to wind turbine fault diagnosis. Initially, a lightweight multiscale separable residual network (LMSRN) model is proposed for each local client. The LMSRN model integrates a multiscale spatial feature derivation unit and a depthwise separable feature extraction unit. Subsequently, to tackle data heterogeneity among clients, canonical correlation coefficients of representations are extracted from the intermediate layers of local LMSRN models, and a representational canonical correlation clustering (RCCC) method is proposed to assess the similarity of local LMSRN models and group them into clusters. Finally, a global model is trained for each cluster. Real-world wind turbine data experiments showcase the superior performance of the proposed clustered federated learning framework over traditional methods in terms of diagnostic accuracy and computational speed. Additionally, the optimal choice of the number of clusters is also discussed.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924019159","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind turbines. To enhance diagnostic performance and reduce communication costs in federated learning with data heterogeneity among different clients, we introduce a clustered federated learning framework to wind turbine fault diagnosis. Initially, a lightweight multiscale separable residual network (LMSRN) model is proposed for each local client. The LMSRN model integrates a multiscale spatial feature derivation unit and a depthwise separable feature extraction unit. Subsequently, to tackle data heterogeneity among clients, canonical correlation coefficients of representations are extracted from the intermediate layers of local LMSRN models, and a representational canonical correlation clustering (RCCC) method is proposed to assess the similarity of local LMSRN models and group them into clusters. Finally, a global model is trained for each cluster. Real-world wind turbine data experiments showcase the superior performance of the proposed clustered federated learning framework over traditional methods in terms of diagnostic accuracy and computational speed. Additionally, the optimal choice of the number of clusters is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于风力涡轮机协同故障诊断的聚类联合学习框架
数据驱动方法在准确诊断风力涡轮机故障方面展现出巨大潜力。为了提高诊断性能并降低联合学习中不同客户端间数据异构的通信成本,我们为风力涡轮机故障诊断引入了集群联合学习框架。最初,我们为每个本地客户端提出了一个轻量级多尺度可分离残差网络(LMSRN)模型。LMSRN 模型集成了多尺度空间特征推导单元和深度可分离特征提取单元。随后,为了解决客户端之间的数据异质性问题,从本地 LMSRN 模型的中间层提取表征的典型相关系数,并提出一种表征典型相关聚类(RCCC)方法来评估本地 LMSRN 模型的相似性,并将它们归类为聚类。最后,为每个聚类训练一个全局模型。真实世界的风力涡轮机数据实验表明,所提出的聚类联合学习框架在诊断准确性和计算速度方面都优于传统方法。此外,还讨论了聚类数量的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Attention enhanced dual stream network with advanced feature selection for power forecasting Characterization by key performance indicators of SFERA-III project to ALTAYR packed-bed prototype From lab to industry: Scaling-up Fe-Ni bimetallic nano oxygen carrier for mid-temperature methane chemical looping reforming Optimal cost predictive BMS considering greywater recycling, responsive HVAC, and energy storage Electrifying the bus network with trolleybus: Analyzing the in motion charging technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1