Nanocrystallization and precipitation behavior evolution of AZ80 magnesium alloy during multi-directional compression

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Results in Physics Pub Date : 2024-09-24 DOI:10.1016/j.rinp.2024.107992
Jinlong Zhang, Chen Wang, Maosen Zhao, Hao Li, Jiaxiong Zhao
{"title":"Nanocrystallization and precipitation behavior evolution of AZ80 magnesium alloy during multi-directional compression","authors":"Jinlong Zhang,&nbsp;Chen Wang,&nbsp;Maosen Zhao,&nbsp;Hao Li,&nbsp;Jiaxiong Zhao","doi":"10.1016/j.rinp.2024.107992","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing demand for high-performance magnesium alloys in the aerospace and transportation industries, researchers conducted a study on the AZ80 magnesium alloy. The primary objective was to achieve a nanocrystalline structure in the alloy through severe plastic deformation using low-strain multi-directional compression at room temperature. Subsequently, an aging treatment was performed to induce the transformation of the structure into a stable state. The study aimed to investigate the morphology and mode of the second phase precipitation in the magnesium alloy after undergoing severe plastic deformation. The research findings revealed that the application of multi-directional and multi-pass compression during room temperature deformation of the magnesium alloy effectively prevented instability and fracture. Moreover, this process facilitated the accumulation of larger true strain. As the number of compression passes increased, deformation twins became increasingly denser, particularly in the intersecting areas. Consequently, ultrafine high-angle grain structures were preferentially formed in these regions. Furthermore, the number of fine-grained areas gradually increased with each deformation pass. After ΣΔε 5.12, the grain size was refined to a range of 100–200 nm. Additionally, the aging treatment following severe plastic deformation brought about a significant change in the traditional lamellar precipitation mode of the second phase Mg<sub>17</sub>Al<sub>12</sub> in the magnesium alloy. Instead, spherical precipitation occurred.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"65 ","pages":"Article 107992"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724006776","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the growing demand for high-performance magnesium alloys in the aerospace and transportation industries, researchers conducted a study on the AZ80 magnesium alloy. The primary objective was to achieve a nanocrystalline structure in the alloy through severe plastic deformation using low-strain multi-directional compression at room temperature. Subsequently, an aging treatment was performed to induce the transformation of the structure into a stable state. The study aimed to investigate the morphology and mode of the second phase precipitation in the magnesium alloy after undergoing severe plastic deformation. The research findings revealed that the application of multi-directional and multi-pass compression during room temperature deformation of the magnesium alloy effectively prevented instability and fracture. Moreover, this process facilitated the accumulation of larger true strain. As the number of compression passes increased, deformation twins became increasingly denser, particularly in the intersecting areas. Consequently, ultrafine high-angle grain structures were preferentially formed in these regions. Furthermore, the number of fine-grained areas gradually increased with each deformation pass. After ΣΔε 5.12, the grain size was refined to a range of 100–200 nm. Additionally, the aging treatment following severe plastic deformation brought about a significant change in the traditional lamellar precipitation mode of the second phase Mg17Al12 in the magnesium alloy. Instead, spherical precipitation occurred.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多向压缩过程中 AZ80 镁合金的纳米结晶和沉淀行为演变
为满足航空航天和运输行业对高性能镁合金日益增长的需求,研究人员对 AZ80 镁合金进行了研究。研究的主要目的是在室温下利用低应变多向压缩,通过剧烈塑性变形在合金中形成纳米晶结构。随后,进行老化处理,促使结构转变为稳定状态。该研究旨在探究镁合金在经历剧烈塑性变形后第二相析出的形态和模式。研究结果表明,在镁合金室温变形过程中施加多方向和多通道压缩,可有效防止不稳定和断裂。此外,这一过程还有助于积累更大的真实应变。随着压缩次数的增加,变形孪晶变得越来越致密,尤其是在相交区域。因此,超细高角度晶粒结构优先在这些区域形成。此外,细晶粒区域的数量随着每次变形次数的增加而逐渐增加。在 ΣΔε 5.12 之后,晶粒尺寸细化到 100-200 nm。此外,严重塑性变形后的时效处理使镁合金中第二相 Mg17Al12 的传统片状析出模式发生了显著变化。取而代之的是球形析出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
期刊最新文献
A filtering polarization conversion electromagnetic surface for simultaneous RCS reduction and transmission Computational analysis of heat transfer for hybrid nanofluid flow within a wavy lid-driven cavity with entropy generation and non-uniform heating Convergent laser beam shapes: Unveiling the dynamics of Laser-induced elastic waves in composite materials Exploring structural and electronic properties of topological insulator/graphene nano-heterostructures Enhanced thermoelectric properties of bismuth telluride via Ultra-Low thermal conductivity BOSC compound addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1