Meng Cheng, Xingtai Yan, Wenjing Liu, Ruihua Li, Gangfu Song
{"title":"Cyanide-functionalized ionic liquid-modified polymer as an adsorbent for highly efficient and selective recovery of Au(III)","authors":"Meng Cheng, Xingtai Yan, Wenjing Liu, Ruihua Li, Gangfu Song","doi":"10.1016/j.jece.2024.114238","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114238"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.