Rongwei Yang , Shan He , Junyao Liu , Jiyun Shen , Linlin Wang , Yongjin Yu , Dongwei Hou
{"title":"Tensile strength and failure mechanism of rock–cement sample: Roles of curing temperature, nano-silica and rock type","authors":"Rongwei Yang , Shan He , Junyao Liu , Jiyun Shen , Linlin Wang , Yongjin Yu , Dongwei Hou","doi":"10.1016/j.cemconres.2024.107673","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the tensile strength and failure mechanism of rock–cement interfacial transition zone (ITZ) is of vital significance to the sealing integrity of cement sheath under downhole condition. Taking advantage of multiple techniques, i.e., digital image correlation (DIC), nano-indentation, XRD-Rietveld analysis, <span><math><mrow><msup><mrow></mrow><mrow><mn>29</mn></mrow></msup><mtext>Si</mtext></mrow></math></span> MAS solid NMR, and SEM-EDX, this study is devoted to investigating the impacts of curing temperature, rock type, and the addition of nano-silica (NS), on the tensile strength and failure mechanism of rock–cement sample. The experimental results show that both the curing temperature and the addition of NS leads to the formation of more C-S-H, which densifies the ITZ microstructure and responsible for high tensile strength of rock–cement samples; the tensile strengths of shale-cement samples are consistently higher than those of sandstone-cement sample; the crack velocities for rock–cement samples under three-point bending tests are approximately 1 mm/s, the crack velocities for rock–cement samples are slowed down when the NS is incorporated in cement paste, but they are independent on the rock type and curing temperature.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"186 ","pages":"Article 107673"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002540","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the tensile strength and failure mechanism of rock–cement interfacial transition zone (ITZ) is of vital significance to the sealing integrity of cement sheath under downhole condition. Taking advantage of multiple techniques, i.e., digital image correlation (DIC), nano-indentation, XRD-Rietveld analysis, MAS solid NMR, and SEM-EDX, this study is devoted to investigating the impacts of curing temperature, rock type, and the addition of nano-silica (NS), on the tensile strength and failure mechanism of rock–cement sample. The experimental results show that both the curing temperature and the addition of NS leads to the formation of more C-S-H, which densifies the ITZ microstructure and responsible for high tensile strength of rock–cement samples; the tensile strengths of shale-cement samples are consistently higher than those of sandstone-cement sample; the crack velocities for rock–cement samples under three-point bending tests are approximately 1 mm/s, the crack velocities for rock–cement samples are slowed down when the NS is incorporated in cement paste, but they are independent on the rock type and curing temperature.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.