Integrating gamma camera image and surveillance videos to track the pedestrian with radiation source

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-09-25 DOI:10.1016/j.jrras.2024.101105
YiCong Zhou, XueTao Liu, YuFeng Xiao
{"title":"Integrating gamma camera image and surveillance videos to track the pedestrian with radiation source","authors":"YiCong Zhou,&nbsp;XueTao Liu,&nbsp;YuFeng Xiao","doi":"10.1016/j.jrras.2024.101105","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the demand for customs detection and tracking of individuals carrying radioactive sources, this paper proposes a method that integrates radiographic imaging information for identifying and tracking carriers. Initially, a portable source personnel visual tracking system equipped with a gamma camera is constructed to capture the position of radioactive sources and images of moving personnel within the security inspection area. Subsequently, a method is developed to link personnel targets identified by both the gamma camera and surveillance cameras, using Euclidean distance and intersecting areas to pinpoint carriers. Furthermore, leveraging the improved RepVGG reparameterization structure and residual networks, we accelerate Re-Identification (RE-ID) inference and propose a Deep Feature Tracking (DFT) method. This method tracks personnel by comparing feature similarities in adjacent frames. Experimental results validate the effectiveness of this method in identifying suspicious individuals carrying radioactive sources and in mapping the walking trajectories of these carriers using pre-deployed surveillance cameras.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101105"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002899","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the demand for customs detection and tracking of individuals carrying radioactive sources, this paper proposes a method that integrates radiographic imaging information for identifying and tracking carriers. Initially, a portable source personnel visual tracking system equipped with a gamma camera is constructed to capture the position of radioactive sources and images of moving personnel within the security inspection area. Subsequently, a method is developed to link personnel targets identified by both the gamma camera and surveillance cameras, using Euclidean distance and intersecting areas to pinpoint carriers. Furthermore, leveraging the improved RepVGG reparameterization structure and residual networks, we accelerate Re-Identification (RE-ID) inference and propose a Deep Feature Tracking (DFT) method. This method tracks personnel by comparing feature similarities in adjacent frames. Experimental results validate the effectiveness of this method in identifying suspicious individuals carrying radioactive sources and in mapping the walking trajectories of these carriers using pre-deployed surveillance cameras.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合伽马相机图像和监控视频,追踪带有辐射源的行人
为了满足海关检测和追踪携带放射源人员的需求,本文提出了一种整合放射成像信息的方法,用于识别和追踪携带者。首先,构建了一个配备伽马相机的便携式放射源人员视觉跟踪系统,用于捕捉放射源的位置和安检区域内移动人员的图像。随后,利用欧氏距离和相交区域,开发出一种方法,将伽马相机和监控摄像机识别出的人员目标联系起来,以精确定位放射源携带者。此外,利用改进的 RepVGG 重参数化结构和残差网络,我们加快了重新识别(RE-ID)推理的速度,并提出了一种深度特征跟踪(DFT)方法。这种方法通过比较相邻帧中的特征相似性来跟踪人员。实验结果验证了该方法在识别携带放射源的可疑人员以及利用预先部署的监控摄像机绘制这些携带者的行走轨迹方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Implementation of homotopy analysis method for entropy-optimized two-phase nanofluid flow in a bioconvective non-Newtonian model with thermal radiation Comparative analysis of machine learning techniques for estimating dynamic viscosity in various nanofluids for improving the efficiency of thermal and radiative systems Multi-modal feature integration for thyroid nodule prediction: Combining clinical data with ultrasound-based deep features The New Extended Exponentiated Burr XII distribution: Properties and applications Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1