{"title":"Cloud computing and spatial hydrology for monitoring the Buyo and Kossou reservoirs in Côte d'Ivoire","authors":"Valère-Carin Jofack Sokeng , Sekouba Oulare , Koffi Fernand Kouamé , Benoit Mertens , Tiémoman Kone , Thibault Catry , Benjamin Pillot , Pétin Edouard Ouattara , Diakaria Kone , Massiré Sow","doi":"10.1016/j.rsase.2024.101353","DOIUrl":null,"url":null,"abstract":"<div><div>The Buyo and Kossou reservoirs are crucial for water supply, agricultural irrigation, and hydroelectric power generation in Côte d'Ivoire. However, climate change threatens the stability and availability of these water resources by increasing rainfall variability, extending drought periods, and intensifying extreme weather events. These challenges underscore the need for precise and continuous monitoring of water levels and surface areas to ensure sustainable management. Due to the scarcity of gauging stations, the objective of this study is to leverage cloud computing technologies along with altimetric and satellite data, for effective reservoir monitoring. Tools like the EO-Africa program's Innovation Lab and Google Earth Engine (GEE), along with advanced image processing software such as PyGEE-SWToolbox and AlTis, were used to process large datasets from the Sentinel-1, Sentinel-2, and Sentinel-3 satellites. These satellites delivered extensive, high-resolution imagery and altimetric data, crucial for monitoring changes in the reservoirs. The processed data were validated with in-situ measurements, yielding a Root Mean Square Error (RMSE) of less than 0.4 m and a correlation coefficient exceeding 0.90. The results highlighted water surface and level changes from 2016 to 2022, with downward trends and seasonal variations closely aligning with in-situ measurements. The study also revealed that the relationship between water levels and surface areas is influenced by both precipitation and the hydrological regimes of the Bandama and Sassandra rivers, demonstrating the complexity of water dynamics in these reservoirs. This research emphasizes the effectiveness of integrating spatial hydrology with cloud computing tools for fast and accurate monitoring of large reservoir. The use of these advanced technologies provides near real-time, reliable, and easily accessible data, offering a significant advantage for water resource management in Côte d'Ivoire.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101353"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Buyo and Kossou reservoirs are crucial for water supply, agricultural irrigation, and hydroelectric power generation in Côte d'Ivoire. However, climate change threatens the stability and availability of these water resources by increasing rainfall variability, extending drought periods, and intensifying extreme weather events. These challenges underscore the need for precise and continuous monitoring of water levels and surface areas to ensure sustainable management. Due to the scarcity of gauging stations, the objective of this study is to leverage cloud computing technologies along with altimetric and satellite data, for effective reservoir monitoring. Tools like the EO-Africa program's Innovation Lab and Google Earth Engine (GEE), along with advanced image processing software such as PyGEE-SWToolbox and AlTis, were used to process large datasets from the Sentinel-1, Sentinel-2, and Sentinel-3 satellites. These satellites delivered extensive, high-resolution imagery and altimetric data, crucial for monitoring changes in the reservoirs. The processed data were validated with in-situ measurements, yielding a Root Mean Square Error (RMSE) of less than 0.4 m and a correlation coefficient exceeding 0.90. The results highlighted water surface and level changes from 2016 to 2022, with downward trends and seasonal variations closely aligning with in-situ measurements. The study also revealed that the relationship between water levels and surface areas is influenced by both precipitation and the hydrological regimes of the Bandama and Sassandra rivers, demonstrating the complexity of water dynamics in these reservoirs. This research emphasizes the effectiveness of integrating spatial hydrology with cloud computing tools for fast and accurate monitoring of large reservoir. The use of these advanced technologies provides near real-time, reliable, and easily accessible data, offering a significant advantage for water resource management in Côte d'Ivoire.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems