β-Glucosidases in specialized metabolism: Towards a new understanding of the gatekeepers of plant chemical arsenal

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-09-25 DOI:10.1016/j.pbi.2024.102638
Angeliki Stathaki , Georgia Pantidi , Margarita Thomopoulou , Konstantinos Koudounas
{"title":"β-Glucosidases in specialized metabolism: Towards a new understanding of the gatekeepers of plant chemical arsenal","authors":"Angeliki Stathaki ,&nbsp;Georgia Pantidi ,&nbsp;Margarita Thomopoulou ,&nbsp;Konstantinos Koudounas","doi":"10.1016/j.pbi.2024.102638","DOIUrl":null,"url":null,"abstract":"<div><div>Plants produce an exceptional multitude of chemicals to compensate with challenging environments. Despite the structural pluralism of specialized metabolism, often defensive compounds are stored <em>in planta</em> as glycosides and reactive aglycones are conditionally activated by specific β-glucosidases—a large family of enzymes with pluripotent contribution in homeostasis and a pivotal role in plant chemical defense. Typically, these detonating enzymes are characterized by exceptional substrate specificity and, in several cases, even isoenzymes exhibit differentiated molecular or biochemical characteristics. This article focuses on important intrinsic characteristics of plant β-glucosidases detonating defensive compounds and highlights recent studies with novel implications in regulatory mechanisms.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102638"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001298","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants produce an exceptional multitude of chemicals to compensate with challenging environments. Despite the structural pluralism of specialized metabolism, often defensive compounds are stored in planta as glycosides and reactive aglycones are conditionally activated by specific β-glucosidases—a large family of enzymes with pluripotent contribution in homeostasis and a pivotal role in plant chemical defense. Typically, these detonating enzymes are characterized by exceptional substrate specificity and, in several cases, even isoenzymes exhibit differentiated molecular or biochemical characteristics. This article focuses on important intrinsic characteristics of plant β-glucosidases detonating defensive compounds and highlights recent studies with novel implications in regulatory mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特殊代谢中的β-葡糖苷酶:重新认识植物化学武库的看门人
植物会产生大量特殊的化学物质,以应对充满挑战的环境。尽管特化代谢的结构多种多样,但防御性化合物通常以苷的形式储存在植物体内,而活性苷凝物则由特定的β-葡萄糖苷酶有条件地激活--β-葡萄糖苷酶是一个庞大的酶家族,在植物体内平衡中具有多能性,在植物化学防御中起着关键作用。通常,这些引爆酶具有特殊的底物特异性,在某些情况下,甚至同工酶也表现出不同的分子或生化特征。本文重点介绍了植物β-葡萄糖苷酶引爆防御性化合物的重要内在特征,并着重介绍了对调控机制有新影响的最新研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Plant growth and development: Experimental diversity is essential for dissecting plant diversity. Detecting novel plant pathogen threats to food system security by integrating the Plant Reactome and remote sensing. Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions. Chromatin dynamics and epigenetic regulation in plant development and environmental responses. Editorial overview: Spatial and temporal regulation of molecular and cell biological process across biological scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1