Age of Information-Based Abnormality Detection With Decay in the Human Circulatory System

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2024-07-11 DOI:10.1109/TMBMC.2024.3426951
Saswati Pal;Jorge Torres Gómez;Regine Wendt;Stefan Fischer;Falko Dressler
{"title":"Age of Information-Based Abnormality Detection With Decay in the Human Circulatory System","authors":"Saswati Pal;Jorge Torres Gómez;Regine Wendt;Stefan Fischer;Falko Dressler","doi":"10.1109/TMBMC.2024.3426951","DOIUrl":null,"url":null,"abstract":"Detecting abnormalities early by deploying a network of mobile nanosensors within the human body remains a challenging task. Current methods for abnormality detection rely on placing gateways at arbitrary locations. Given the critical importance of timely monitoring and detection in severe infections, relying on arbitrary gateway locations introduces delays in detection. In this work, we conducted an analysis of the impact of gateway placement and infection locations on detection time, detection ratio, and the average Peak Age of Information (PAoI). Furthermore, we also added decay of nanosensors similar to operation in the human body. We investigated its implications on both the detection ratio of abnormalities and the average PAoI. We employed a Monte Carlo simulation involving 1000 nanosensors circulating in the HCS for 500 seconds. The results revealed that the favorable gateway position is at the heart, minimizing detection time and enhancing the detection ratio for various infection locations. Furthermore, we observed that the detection ratio exhibited reduced variance with increased decay rates in nanosensors. Analyzing the PAoI across varying decay rates highlighted the importance of nanosensor quantity in relation to decay rate in ensuring accurate and timely infection localization.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"487-492"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10594753/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting abnormalities early by deploying a network of mobile nanosensors within the human body remains a challenging task. Current methods for abnormality detection rely on placing gateways at arbitrary locations. Given the critical importance of timely monitoring and detection in severe infections, relying on arbitrary gateway locations introduces delays in detection. In this work, we conducted an analysis of the impact of gateway placement and infection locations on detection time, detection ratio, and the average Peak Age of Information (PAoI). Furthermore, we also added decay of nanosensors similar to operation in the human body. We investigated its implications on both the detection ratio of abnormalities and the average PAoI. We employed a Monte Carlo simulation involving 1000 nanosensors circulating in the HCS for 500 seconds. The results revealed that the favorable gateway position is at the heart, minimizing detection time and enhancing the detection ratio for various infection locations. Furthermore, we observed that the detection ratio exhibited reduced variance with increased decay rates in nanosensors. Analyzing the PAoI across varying decay rates highlighted the importance of nanosensor quantity in relation to decay rate in ensuring accurate and timely infection localization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体循环系统中基于信息的异常检测衰减时代
通过在人体内部署移动纳米传感器网络来及早检测异常仍然是一项具有挑战性的任务。目前的异常检测方法依赖于在任意位置放置网关。鉴于在严重感染情况下及时监测和检测至关重要,依赖任意网关位置会导致检测延迟。在这项工作中,我们分析了网关位置和感染位置对检测时间、检测率和平均峰值信息年龄(PAoI)的影响。此外,我们还增加了纳米传感器的衰减,类似于在人体中的操作。我们研究了其对异常检测率和平均 PAoI 的影响。我们采用蒙特卡洛模拟,让 1000 个纳米传感器在 HCS 中循环 500 秒。结果表明,有利的网关位置是心脏,可最大限度地缩短检测时间,并提高不同感染位置的检测率。此外,我们还观察到,随着纳米传感器衰减率的增加,检测率的方差也在减小。分析不同衰减率下的 PAoI 突出了纳米传感器数量与衰减率的关系对确保准确及时的感染定位的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
期刊最新文献
Table of Contents IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1