Laser solid-phase synthesis of graphene shell-encapsulated high-entropy alloy nanoparticles

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-09-26 DOI:10.1038/s41377-024-01614-y
Yuxiang Liu, Jianghuai Yuan, Jiantao Zhou, Kewen Pan, Ran Zhang, Rongxia Zhao, Lin Li, Yihe Huang, Zhu Liu
{"title":"Laser solid-phase synthesis of graphene shell-encapsulated high-entropy alloy nanoparticles","authors":"Yuxiang Liu, Jianghuai Yuan, Jiantao Zhou, Kewen Pan, Ran Zhang, Rongxia Zhao, Lin Li, Yihe Huang, Zhu Liu","doi":"10.1038/s41377-024-01614-y","DOIUrl":null,"url":null,"abstract":"<p>Rapid synthesis of high-entropy alloy nanoparticles (HEA NPs) offers new opportunities to develop functional materials in widespread applications. Although some methods have successfully produced HEA NPs, these methods generally require rigorous conditions such as high pressure, high temperature, restricted atmosphere, and limited substrates, which impede practical viability. In this work, we report laser solid-phase synthesis of CrMnFeCoNi nanoparticles by laser irradiation of mixed metal precursors on a laser-induced graphene (LIG) support with a 3D porous structure. The CrMnFeCoNi nanoparticles are embraced by several graphene layers, forming graphene shell-encapsulated HEA nanoparticles. The mechanisms of the laser solid-phase synthesis of HEA NPs on LIG supports are investigated through theoretical simulation and experimental observations, in consideration of mixed metal precursor adsorption, thermal decomposition, reduction through electrons from laser-induced thermionic emission, and liquid beads splitting. The production rate reaches up to 30 g/h under the current laser setup. The laser-synthesized graphene shell-encapsulated CrMnFeCoNi NPs loaded on LIG-coated carbon paper are used directly as 3D binder-free integrated electrodes and exhibited excellent electrocatalytic activity towards oxygen evolution reaction with an overpotential of 293 mV at the current density of 10 mA/cm<sup>2</sup> and exceptional stability over 428 h in alkaline media, outperforming the commercial RuO<sub>2</sub> catalyst and the relevant catalysts reported by other methods. This work also demonstrates the versatility of this technique through the successful synthesis of CrMnFeCoNi oxide, sulfide, and phosphide nanoparticles.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01614-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid synthesis of high-entropy alloy nanoparticles (HEA NPs) offers new opportunities to develop functional materials in widespread applications. Although some methods have successfully produced HEA NPs, these methods generally require rigorous conditions such as high pressure, high temperature, restricted atmosphere, and limited substrates, which impede practical viability. In this work, we report laser solid-phase synthesis of CrMnFeCoNi nanoparticles by laser irradiation of mixed metal precursors on a laser-induced graphene (LIG) support with a 3D porous structure. The CrMnFeCoNi nanoparticles are embraced by several graphene layers, forming graphene shell-encapsulated HEA nanoparticles. The mechanisms of the laser solid-phase synthesis of HEA NPs on LIG supports are investigated through theoretical simulation and experimental observations, in consideration of mixed metal precursor adsorption, thermal decomposition, reduction through electrons from laser-induced thermionic emission, and liquid beads splitting. The production rate reaches up to 30 g/h under the current laser setup. The laser-synthesized graphene shell-encapsulated CrMnFeCoNi NPs loaded on LIG-coated carbon paper are used directly as 3D binder-free integrated electrodes and exhibited excellent electrocatalytic activity towards oxygen evolution reaction with an overpotential of 293 mV at the current density of 10 mA/cm2 and exceptional stability over 428 h in alkaline media, outperforming the commercial RuO2 catalyst and the relevant catalysts reported by other methods. This work also demonstrates the versatility of this technique through the successful synthesis of CrMnFeCoNi oxide, sulfide, and phosphide nanoparticles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光固相合成石墨烯外壳封装的高熵合金纳米粒子
高熵合金纳米粒子(HEA NPs)的快速合成为开发广泛应用的功能材料提供了新的机遇。虽然有些方法已成功制备出 HEA NPs,但这些方法通常需要高压、高温、受限气氛和有限基底等严格条件,这阻碍了其实际可行性。在这项工作中,我们报告了在具有三维多孔结构的激光诱导石墨烯(LIG)支撑物上,通过激光辐照混合金属前驱体,激光固相合成铬锰铁钴镍(CrMnFeCoNi)纳米粒子的情况。CrMnFeCoNi 纳米粒子被多个石墨烯层包裹,形成了石墨烯壳封装的 HEA 纳米粒子。通过理论模拟和实验观察,研究了混合金属前驱体吸附、热分解、激光诱导热离子发射电子还原和液珠分裂等在 LIG 支撑物上激光固相合成 HEA NPs 的机理。在目前的激光装置下,生产率可达 30 克/小时。激光合成的石墨烯外壳封装的铬锰铁钴镍 NPs 被负载在 LIG 涂层碳纸上,可直接用作三维无粘结剂集成电极,在 10 mA/cm2 电流密度下的过电位为 293 mV,在碱性介质中的稳定性超过 428 h,对氧进化反应表现出优异的电催化活性,优于商用 RuO2 催化剂和其他方法报道的相关催化剂。这项工作还通过成功合成铬锰铁钴镍氧化物、硫化物和磷化物纳米粒子,证明了该技术的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Recent progress in nonlinear optical molybdenum/tungsten tellurites: Structures, crystal growth and characterizations Metal-organic framework-hydrogel composites as emerging platforms for enhanced wound healing applications: Material design, therapeutic strategies, and future prospects In This Issue, Volume 15, Issue 11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1