Theory of Stimulated Brillouin Scattering in Fibers for Highly Multimode Excitations

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-09-26 DOI:10.1103/physrevx.14.031053
Kabish Wisal, Stephen C. Warren-Smith, Chun-Wei Chen, Hui Cao, A. Douglas Stone
{"title":"Theory of Stimulated Brillouin Scattering in Fibers for Highly Multimode Excitations","authors":"Kabish Wisal, Stephen C. Warren-Smith, Chun-Wei Chen, Hui Cao, A. Douglas Stone","doi":"10.1103/physrevx.14.031053","DOIUrl":null,"url":null,"abstract":"Stimulated Brillouin scattering (SBS) is often an unwanted loss mechanism in both active and passive fibers. Highly multimode excitation of fibers has been proposed as a novel route toward efficient SBS suppression. Here, we develop a detailed, quantitative theory which confirms this proposal and elucidates the physical mechanisms involved. Starting from the vector optical and scalar acoustic equations, we derive appropriate nonlinear coupled mode equations for the signal and Stokes modal amplitudes and an analytical formula for the SBS (Stokes) gain with applicable approximations, such as the neglect of shear effects. This allows us to calculate the exponential growth rate of the Stokes power as a function of the distribution of power in a highly multimode signal. The peak value of the gain spectrum across the excited modes determines the SBS threshold—the maximum SBS-limited power that can be sent through the fiber. The theory shows that the peak SBS gain is greatly reduced by highly multimode excitation due to gain broadening and relatively weaker intermodal SBS gain. The inclusion of exact vector optical modes in the calculation is crucial in order to capture the incomplete intermodal coupling due to mismatch of polarization patterns of higher-order modes. We demonstrate that equal excitation of the 160 modes of a commercially available, highly multimode circular step index fiber raises the SBS threshold by a factor of 6.5 and find comparable suppression of SBS in similar fibers with a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"sans-serif\">D</mi></mrow></math>-shaped cross section.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"35 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031053","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stimulated Brillouin scattering (SBS) is often an unwanted loss mechanism in both active and passive fibers. Highly multimode excitation of fibers has been proposed as a novel route toward efficient SBS suppression. Here, we develop a detailed, quantitative theory which confirms this proposal and elucidates the physical mechanisms involved. Starting from the vector optical and scalar acoustic equations, we derive appropriate nonlinear coupled mode equations for the signal and Stokes modal amplitudes and an analytical formula for the SBS (Stokes) gain with applicable approximations, such as the neglect of shear effects. This allows us to calculate the exponential growth rate of the Stokes power as a function of the distribution of power in a highly multimode signal. The peak value of the gain spectrum across the excited modes determines the SBS threshold—the maximum SBS-limited power that can be sent through the fiber. The theory shows that the peak SBS gain is greatly reduced by highly multimode excitation due to gain broadening and relatively weaker intermodal SBS gain. The inclusion of exact vector optical modes in the calculation is crucial in order to capture the incomplete intermodal coupling due to mismatch of polarization patterns of higher-order modes. We demonstrate that equal excitation of the 160 modes of a commercially available, highly multimode circular step index fiber raises the SBS threshold by a factor of 6.5 and find comparable suppression of SBS in similar fibers with a D-shaped cross section.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光纤中高度多模激发的受激布里渊散射理论
受激布里渊散射(SBS)通常是有源和无源光纤中一种不必要的损耗机制。有人提出,对光纤进行高度多模激发是有效抑制 SBS 的新途径。在此,我们提出了一个详细的定量理论,证实了这一提议,并阐明了其中的物理机制。从矢量光学方程和标量声学方程出发,我们为信号和斯托克斯模态振幅推导出了适当的非线性耦合模态方程,并为 SBS(斯托克斯)增益推导出了分析公式,其中包含适用的近似值,如忽略剪切效应。这样,我们就能计算出斯托克斯功率的指数增长率与高度多模信号中功率分布的函数关系。整个激发模式的增益频谱峰值决定了 SBS 门限--光纤中可发送的最大 SBS 限制功率。理论表明,由于增益展宽和相对较弱的模式间 SBS 增益,高度多模激励会大大降低 SBS 增益峰值。在计算中加入精确的矢量光学模式对于捕捉高阶模式极化模式不匹配导致的不完全模间耦合至关重要。我们证明,对商用高多模环形阶跃指数光纤的 160 个模式进行等效激励,可将 SBS 门限提高 6.5 倍,并发现在具有 D 型横截面的类似光纤中,SBS 的抑制效果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Information Arbitrage in Bipartite Heat Engines Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide Lifted TASEP: A Solvable Paradigm for Speeding up Many-Particle Markov Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1