Optimised proteomic analysis of insulin granules from MIN6 cells identifies Scamp3, a novel regulator of insulin secretion and content.

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetes Pub Date : 2024-09-25 DOI:10.2337/db24-0355
Nicholas Norris, Belinda Yau, Carlo Famularo, Hayley Webster, Thomas Loudovaris, Helen E. Thomas, Mark Larance, Alistair M. Senior, Melkam A. Kebede
{"title":"Optimised proteomic analysis of insulin granules from MIN6 cells identifies Scamp3, a novel regulator of insulin secretion and content.","authors":"Nicholas Norris, Belinda Yau, Carlo Famularo, Hayley Webster, Thomas Loudovaris, Helen E. Thomas, Mark Larance, Alistair M. Senior, Melkam A. Kebede","doi":"10.2337/db24-0355","DOIUrl":null,"url":null,"abstract":"Pancreatic β-cells in the Islets of Langerhans are key to maintaining glucose homeostasis, by secreting the peptide hormone insulin. Insulin is packaged within vesicles named insulin secretory granules (ISGs), that have recently been considered to have intrinsic structures and proteins that regulate insulin granule maturation, trafficking, and secretion. Previously, studies have identified a handful of novel ISG-associated proteins using different separation techniques. Here, this study combines an optimized ISG isolation technique and mass spectrometry-based proteomics, with an unbiased protein correlation profiling and targeted machine learning approach to uncover 211 ISG-associated proteins with confidence. Four of these proteins: Syntaxin-7, Synaptophysin, Synaptotagmin-13 and Scamp3 have not been previously ISG-associated. Through colocalization analysis of confocal imaging we validate the association of these proteins to the ISG in MIN6 and human β-cells. We further validate the role for one (Scamp3) in regulating insulin content and secretion from β-cells for the first time. Scamp3 knock-down INS-1 cells show a reduction in insulin content and dysfunctional insulin secretion. These data provide the basis for future investigation of Scamp3 in β-cell biology and the regulation of insulin secretion.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"12 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0355","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic β-cells in the Islets of Langerhans are key to maintaining glucose homeostasis, by secreting the peptide hormone insulin. Insulin is packaged within vesicles named insulin secretory granules (ISGs), that have recently been considered to have intrinsic structures and proteins that regulate insulin granule maturation, trafficking, and secretion. Previously, studies have identified a handful of novel ISG-associated proteins using different separation techniques. Here, this study combines an optimized ISG isolation technique and mass spectrometry-based proteomics, with an unbiased protein correlation profiling and targeted machine learning approach to uncover 211 ISG-associated proteins with confidence. Four of these proteins: Syntaxin-7, Synaptophysin, Synaptotagmin-13 and Scamp3 have not been previously ISG-associated. Through colocalization analysis of confocal imaging we validate the association of these proteins to the ISG in MIN6 and human β-cells. We further validate the role for one (Scamp3) in regulating insulin content and secretion from β-cells for the first time. Scamp3 knock-down INS-1 cells show a reduction in insulin content and dysfunctional insulin secretion. These data provide the basis for future investigation of Scamp3 in β-cell biology and the regulation of insulin secretion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 MIN6 细胞胰岛素颗粒的优化蛋白质组分析发现了胰岛素分泌和含量的新型调节因子 Scamp3。
朗格汉斯胰岛中的胰岛β细胞通过分泌肽类激素胰岛素来维持葡萄糖稳态。胰岛素被包装在名为胰岛素分泌颗粒(ISGs)的囊泡中,最近人们认为这些囊泡具有内在结构和蛋白质,可调节胰岛素颗粒的成熟、贩运和分泌。以前的研究利用不同的分离技术发现了一些新型的 ISG 相关蛋白。在这里,这项研究将优化的 ISG 分离技术和基于质谱的蛋白质组学技术相结合,并采用无偏见的蛋白质相关性分析和有针对性的机器学习方法,从而有把握地发现了 211 个 ISG 相关蛋白质。其中四个蛋白:Syntaxin-7、Synaptophysin、Synaptotagmin-13 和 Scamp3 以前从未与 ISG 相关。通过共聚焦成像的共聚焦分析,我们验证了这些蛋白在 MIN6 和人类 β 细胞中与 ISG 的关联。我们首次进一步验证了其中一个蛋白(Scamp3)在调节β细胞胰岛素含量和分泌中的作用。敲除 Scamp3 的 INS-1 细胞显示出胰岛素含量减少和胰岛素分泌失调。这些数据为今后研究 Scamp3 在 β 细胞生物学和胰岛素分泌调控中的作用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
期刊最新文献
Tracking insulin- and glucagon-expressing cells in vitro and in vivo using a double reporter human embryonic stem cell line Proteomic Signature of Body Mass Index and Risk of Type 2 Diabetes Activation of the HPA axis does not explain non-responsiveness to GLP-1R agonist treatment in individuals with type 2 diabetes Friend or foe: the paradoxical roles of MG53 in diabetes mellitus Innovating Diabetes Care in Pregnancy: Do group care models improve outcomes and equity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1