Comparative Evaluation of Mediated Electrochemical Reduction and Chemical Redox Titration for Quantifying the Electron Accepting Capacities of Soils and Redox-Active Soil Constituents

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-09-26 DOI:10.1021/acs.est.4c06514
Juan C. Rincón-Rodríguez, Paula A. Cárdenas-Hernández, Jimmy Murillo-Gelvez, Dominic M. Di Toro, Herbert E. Allen, Richard F. Carbonaro, Pei C. Chiu
{"title":"Comparative Evaluation of Mediated Electrochemical Reduction and Chemical Redox Titration for Quantifying the Electron Accepting Capacities of Soils and Redox-Active Soil Constituents","authors":"Juan C. Rincón-Rodríguez, Paula A. Cárdenas-Hernández, Jimmy Murillo-Gelvez, Dominic M. Di Toro, Herbert E. Allen, Richard F. Carbonaro, Pei C. Chiu","doi":"10.1021/acs.est.4c06514","DOIUrl":null,"url":null,"abstract":"The electron accepting capacity (EAC) of soil plays a pivotal role in the biogeochemical cycling of nutrients and transformation of redox-labile contaminants. Prior EAC studies of soils and soil constituents utilized different methods, reductants, and mediators, making cross-study comparison difficult. This study was conducted to quantify and compare the EACs of two soil constituents (hematite and Leonardite humic acid) and 12 soils of diverse composition, using chemical redox titration (CRT) with dithionite as the reductant and mediated electrochemical reduction (MER) with diquat as the mediator. The EACs of hematite and humic acid measured by CRT (EAC<sub>CRT</sub>) and MER (EAC<sub>MER</sub>) are similar and close to the theoretical/reported values. For soils, EAC<sub>CRT</sub> and EAC<sub>MER</sub> increased with iron and organic carbon (TOC) contents, suggesting iron and carbon were the main contributors to soil EAC. EAC<sub>CRT</sub> &gt; EAC<sub>MER</sub> for all soils, and their difference (ΔEAC = EAC<sub>CRT</sub> <b>–</b> EAC<sub>MER</sub>) increased with TOC, presumably due to the longer contact time in CRT and thus more complete reduction of carbonaceous redox moieties. We propose an equation that relates EAC<sub>CRT</sub> to EAC<sub>MER</sub> (ΔEAC = 1796<i>f</i><sub>TOC</sub> + 32) and another that predicts EAC<sub>CRT</sub> from dithionite-reducible Fe and TOC (EAC<sub>CRT</sub> = 2705 μmol e<sup>–</sup>/g C × <i>f</i><sub>TOC</sub> + 17907 μmol e<sup>–</sup>/g Fe × <i>f</i><sub>Fe<sub>dithionite-reducible</sub></sub>). Our results suggest that at least 10−15% of soil organic carbon contributed to EAC<sub>CRT</sub>.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06514","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electron accepting capacity (EAC) of soil plays a pivotal role in the biogeochemical cycling of nutrients and transformation of redox-labile contaminants. Prior EAC studies of soils and soil constituents utilized different methods, reductants, and mediators, making cross-study comparison difficult. This study was conducted to quantify and compare the EACs of two soil constituents (hematite and Leonardite humic acid) and 12 soils of diverse composition, using chemical redox titration (CRT) with dithionite as the reductant and mediated electrochemical reduction (MER) with diquat as the mediator. The EACs of hematite and humic acid measured by CRT (EACCRT) and MER (EACMER) are similar and close to the theoretical/reported values. For soils, EACCRT and EACMER increased with iron and organic carbon (TOC) contents, suggesting iron and carbon were the main contributors to soil EAC. EACCRT > EACMER for all soils, and their difference (ΔEAC = EACCRT EACMER) increased with TOC, presumably due to the longer contact time in CRT and thus more complete reduction of carbonaceous redox moieties. We propose an equation that relates EACCRT to EACMER (ΔEAC = 1796fTOC + 32) and another that predicts EACCRT from dithionite-reducible Fe and TOC (EACCRT = 2705 μmol e/g C × fTOC + 17907 μmol e/g Fe × fFedithionite-reducible). Our results suggest that at least 10−15% of soil organic carbon contributed to EACCRT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较评估介导电化学还原法和化学氧化还原滴定法量化土壤和具有氧化还原作用的土壤成分的电子接受能力
土壤的电子接受能力(EAC)在养分的生物地球化学循环和氧化还原性污染物的转化过程中起着举足轻重的作用。之前对土壤和土壤成分的电子接受能力研究采用了不同的方法、还原剂和介质,因此很难进行交叉研究比较。本研究采用化学氧化还原滴定法(CRT)(以连硫酸盐为还原剂)和介导电化学还原法(MER)(以敌草快为介导剂),对两种土壤成分(赤铁矿和莱昂纳多腐植酸)和 12 种不同成分的土壤的 EAC 进行了量化和比较。通过化学还原滴定法(EACCRT)和介导电化学还原法(EACMER)测得的赤铁矿和腐植酸的 EAC 值相似,接近理论值/报告值。在土壤中,EACCRT 和 EACMER 随铁和有机碳 (TOC) 含量的增加而增加,表明铁和碳是土壤 EAC 的主要成因。所有土壤的 EACCRT > EACMER 及其差值(ΔEAC = EACCRT - EACMER)均随 TOC 的增加而增加,这可能是由于 CRT 的接触时间更长,因此碳质氧化还原分子的还原更完全。我们提出了一个将 EACCRT 与 EACMER 联系起来的方程(ΔEAC = 1796fTOC + 32),以及另一个根据可还原铁和 TOC 预测 EACCRT 的方程(EACCRT = 2705 μmol e-/g C × fTOC + 17907 μmol e-/g Fe × f 可还原铁)。我们的结果表明,至少有 10-15% 的土壤有机碳对 EACCRT 有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Resolving Atmospheric Oxygenated Organic Molecules in Urban Beijing Using Online Ultrahigh-Resolution Chemical Ionization Mass Spectrometry Iron Nanoparticles-Confined Graphene Oxide Membranes Coupled with Sulfite-Based Advanced Reduction Processes for Highly Efficient and Stable Removal of Bromate Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics The Overlooked Role of Humin in Dark Hydroxyl Radical Production during Oxygenation VUV Activated Fe(VI) by Promoting the Generation of Intermediate Valent Iron and Hydroxyl Radicals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1