Relating Wigner’s Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2024-09-26 DOI:10.22331/q-2024-09-26-1485
Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, David Schmid, Eric Gama Cavalcanti
{"title":"Relating Wigner’s Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning","authors":"Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, David Schmid, Eric Gama Cavalcanti","doi":"10.22331/q-2024-09-26-1485","DOIUrl":null,"url":null,"abstract":"Nonclassical causal modeling was developed in order to explain violations of Bell inequalities while adhering to relativistic causal structure and $faithfulness$---that is, avoiding fine-tuned causal explanations. Recently, a no-go theorem that can be viewed as being stronger than Bell's theorem has been derived, based on extensions of the Wigner's friend thought experiment: the Local Friendliness (LF) no-go theorem. Here we show that the LF no-go theorem poses formidable challenges for the field of causal modeling, even when nonclassical and/or cyclic causal explanations are considered. We first recast the LF inequalities, one of the key elements of the LF no-go theorem, as special cases of monogamy relations stemming from a statistical marginal problem. We then further recast LF inequalities as causal compatibility inequalities stemming from a $nonclassical$ causal marginal problem, for a causal structure implied by well-motivated causal-metaphysical assumptions. We find that the LF inequalities emerge from this causal structure even when one allows the latent causes of observed events to admit post-quantum descriptions, such as in a generalized probabilistic theory or in an even more exotic theory. We further prove that $no$ nonclassical causal model can explain violations of LF inequalities without violating the No Fine-Tuning principle. Finally, we note that these obstacles cannot be overcome even if one appeals to $cyclic$ causal models, and we discuss potential directions for further extensions of the causal modeling framework.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"17 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-09-26-1485","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonclassical causal modeling was developed in order to explain violations of Bell inequalities while adhering to relativistic causal structure and $faithfulness$---that is, avoiding fine-tuned causal explanations. Recently, a no-go theorem that can be viewed as being stronger than Bell's theorem has been derived, based on extensions of the Wigner's friend thought experiment: the Local Friendliness (LF) no-go theorem. Here we show that the LF no-go theorem poses formidable challenges for the field of causal modeling, even when nonclassical and/or cyclic causal explanations are considered. We first recast the LF inequalities, one of the key elements of the LF no-go theorem, as special cases of monogamy relations stemming from a statistical marginal problem. We then further recast LF inequalities as causal compatibility inequalities stemming from a $nonclassical$ causal marginal problem, for a causal structure implied by well-motivated causal-metaphysical assumptions. We find that the LF inequalities emerge from this causal structure even when one allows the latent causes of observed events to admit post-quantum descriptions, such as in a generalized probabilistic theory or in an even more exotic theory. We further prove that $no$ nonclassical causal model can explain violations of LF inequalities without violating the No Fine-Tuning principle. Finally, we note that these obstacles cannot be overcome even if one appeals to $cyclic$ causal models, and we discuss potential directions for further extensions of the causal modeling framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将维格纳的朋友情景与非经典因果相容、一夫一妻关系和微调联系起来
建立非经典因果模型的目的是为了解释违反贝尔不等式的行为,同时遵守相对论因果结构和 "忠实性",即避免微调因果解释。最近,基于维格纳之友思想实验的扩展,人们推导出了一个可被视为比贝尔定理更强的禁区定理:局部友好性(Local Friendliness,LF)禁区定理。在这里,我们要说明的是,即使考虑到非经典和/或循环因果解释,LF 不走定理也会给因果建模领域带来巨大挑战。我们首先将 LF 不等式(LF no-go 定理的关键要素之一)重塑为源于统计边际问题的一夫一妻关系特例。然后,我们进一步将 LF 不等式重塑为源自$nonclassical$因果边际问题的因果相容不等式,其因果结构由动机明确的因果形而上学假设所暗示。我们发现,即使允许观测事件的潜在原因允许后量子描述,例如在广义概率论或更奇特的理论中,LF 不等式也会从这种因果结构中产生。我们进一步证明,没有任何非经典因果模型可以在不违反 "无微调 "原则的情况下解释对 LF 不等式的违反。最后,我们指出,即使诉诸$循环$因果模型也无法克服这些障碍,并讨论了进一步扩展因果建模框架的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction Time dependent Markovian master equation beyond the adiabatic limit Construction of perfect tensors using biunimodular vectors Inevitability of knowing less than nothing Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1