Ruzhen Liu , Zhichao Wang , Minghuang Ling , Kai Zhang , Wei Xu , Zhijie Xu , Xiaomei Huang , Ying Qiao , Yu Luo , Wenzhou Zhang , Hans-Peter Grossart , Zhuhua Luo
{"title":"Dynamics of plastisphere microbial communities in mangrove sediments and their potential impact on N-cycling","authors":"Ruzhen Liu , Zhichao Wang , Minghuang Ling , Kai Zhang , Wei Xu , Zhijie Xu , Xiaomei Huang , Ying Qiao , Yu Luo , Wenzhou Zhang , Hans-Peter Grossart , Zhuhua Luo","doi":"10.1016/j.ibiod.2024.105929","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic pollution has emerged as a significant environmental issue in marine ecosystems. The prolonged presence of plastics in mangrove sediments can have a substantial impact on the carbon and nitrogen cycles of these vital environments. We conducted <em>in situ</em> burial exposure experiments to assess microbial colonization and activity on biodegradable and refractory plastics in mangrove sediments, with a focus on their influence on nitrogen cycling. Variations in microbial community succession and metabolic processes on plastic surfaces were primarily determined by the type of plastic polymer. After 60 days of exposure, the abundance of denitrifying bacteria and denitrification-related genes (<em>narG</em>, <em>nirS</em>, <em>nosZ</em>, and <em>norB</em>) was higher on biodegradable plastics. After 360 days, however, a high abundance of ammonia-oxidizing archaea and nitrification-related genes (<em>pmoA-amoA</em>, <em>pmoB-amoB</em>, <em>pmoC-amoC</em>, and <em>hao</em>) were found on refractory plastics. Consequently, plastic pollution in mangrove sediments could disrupt the nitrogen cycling equilibrium in these ecosystems, underscoring the critical necessity to regulate and alleviate the detrimental impacts of plastic pollution in crucial coastal areas.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105929"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524002002","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic pollution has emerged as a significant environmental issue in marine ecosystems. The prolonged presence of plastics in mangrove sediments can have a substantial impact on the carbon and nitrogen cycles of these vital environments. We conducted in situ burial exposure experiments to assess microbial colonization and activity on biodegradable and refractory plastics in mangrove sediments, with a focus on their influence on nitrogen cycling. Variations in microbial community succession and metabolic processes on plastic surfaces were primarily determined by the type of plastic polymer. After 60 days of exposure, the abundance of denitrifying bacteria and denitrification-related genes (narG, nirS, nosZ, and norB) was higher on biodegradable plastics. After 360 days, however, a high abundance of ammonia-oxidizing archaea and nitrification-related genes (pmoA-amoA, pmoB-amoB, pmoC-amoC, and hao) were found on refractory plastics. Consequently, plastic pollution in mangrove sediments could disrupt the nitrogen cycling equilibrium in these ecosystems, underscoring the critical necessity to regulate and alleviate the detrimental impacts of plastic pollution in crucial coastal areas.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.